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1 Introduction

In this note, we summarize our partial results on quantumly solving standard lattice problems.

Solving standard lattice problems has been a target for designing efficient quantum algorithms for
decades. Regev [Reg09] shows given a polynomial time algorithm that solves LWEn,m,q,Dnoise

where
Dnoise is Gaussian and m can be any polynomial, one can construct a quantum algorithm that
solves standard lattice problems.

Here let us consider the following quantum variant of the LWE problem called solving LWE given
LWE-like states (S|LWE⟩).

Definition 1 (Solving LWE given LWE-like quantum states (S|LWE⟩)). Let n, m, q be positive
integers. Let f be a function from Zq to R. Let u ∈ Zn

q be a secret vector. The problem of solving
LWE given LWE-like states S|LWE⟩n,m,q,f asks to find u given access to an oracle that outputs ai,∑

ei∈Zq
f(ei)|ai · u + ei (mod q)⟩ on its ith query, for i = 1, ...,m. Here each ai is a uniformly

random vector in Zn
q .

S|LWE⟩n,m,q,
√
Dnoise

is easier to solve than LWEn,m,q,Dnoise
, because we can get (classical) LWE samples

by measuring |LWE⟩ in computational basis. Recent work [CLZ21] shows when the noise amplitude
f is of a special kind, we can solve S|LWE⟩ in quantum polynomial time.

Theorem 2 ([CLZ21]). When the noise distribution f is chosen such that f̂ is non-negligible over
Zq, then we can solve S|LWE⟩n,m,q,f in quantum polynomial time.

Given the ‘feasibility’ of solving S|LWE⟩, one plausible roadmap towards solving standard lattice
problems is first to modify Regev’s reduction (from standard lattice problems to LWE) to a reduction
from standard lattice problems to S|LWE⟩, and then solve the S|LWE⟩ problem. The key point is
that the noise amplitude f in S|LWE⟩ should on one hand be ‘strong’ enough so that the S|LWE⟩
oracle can solve standard lattice problems, but on the other hand be ‘weak’ enough so that the
S|LWE⟩ problem is solvable by polynomial quantum algorithms.

2 Quantum reduction from Standard Lattice Problems to S|LWE⟩

In this section, we’ll show how to obtain a quantum reduction from standard lattice problems to
S|LWE⟩, by modifying Regev’s reduction.

2.1 Summary of Regev’s reduction [Reg09]

Let’s start by recalling the details of Regev’s reduction. Many standard lattice problems can be
reduced to sampling from the discrete Gaussian distribution (DL,r) of a nontrivial width r over
the lattice L. With the help of an LWE solver, one can construct a procedure sampling from DL,r

given samples from DL,r·c with c > 1, and hence can start with samples from extremely wide DL,R

(which can be obtained through, say, LLL-algorithm) and end up with samples from DL,r with a
nontrivial (say, polynomial) width r. The precise procedure contains two subroutines:
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Step 1 (Classical, uses LWE) Given an instance of CVPL∗,αq/(
√
2r), using poly(n) samples from DL,r

to create LWE samples with Gaussian noise with width ≤ αq, and then solve it with an LWE
solver which in turn solves the CVPL∗,αq/(

√
2r) problem:

Theorem 3 ([Reg09]). Suppose m ∈ poly(n), q be an integer, α ∈ (0, 1) be a real number and
r >

√
2qηϵ(L) satisfying some smoothing condition with ϵ ∈ negl(n). There exists an efficient

(classical) algorithm that, given an oracle that solves LWEn,m,q,qΨα and poly(n,m) samples
from DL,r, solves CVPL∗,αq/(

√
2r), where Ψα denotes the periodic Gaussian distribution and

qΨα stands for scaling it by q.

Step 2 (Quantum) Using a CVPL∗,αq/(
√
2r) solver to generate poly(n) discrete Gaussian states |DL,r·

√
n/(αq)⟩ =∑

v∈L

√
ρr·

√
n/(αq)(v)|v⟩ and measure them to get poly(n) classical samples from DL,r

√
n/αq:

Theorem 4 ([Reg09]). There exists an efficient quantum algorithm that, given any n-dimensional
lattice L, a number d < λ1(L

∗)/2, and an oracle that solves CVPL∗,d, outputs |DL,
√
n/(

√
2d)⟩.

These two subroutines allow us to transform the distribution DL,r to a narrower distribution
DL,r·

√
n/(αq), and hence solve the discrete Gaussian sampling problem whenever αq/

√
n > 1.

2.2 Modifying Regev’s reduction

Notice that the quantum part of the iterative algorithm actually produces discrete Gaussian states
instead of just classical samples. This gives us hope to construct a procedure sampling |DL,r⟩
states, given |DL,r·c⟩(c > 1) states and an S|LWE⟩ solver. The procedure is as follows:

Step 1 (Uses S|LWE⟩) Given an instance of CVPL∗,αq/r, using poly(n) discrete Gaussian states |DL,r⟩
to create an S|LWE⟩n,m,q,f instance with certain f , and then solve it with an S|LWE⟩n,m,q,f

solver which in turn solves the CVPL∗,αq/r problem;

Step 2 (Same as the quantum step in Regev’s reduction) Using a CVPL∗,αq/(
√
2r) solver to generate

poly(n) discrete Gaussian states |DL,r·
√
n/(αq)⟩ =

∑
v∈L

√
ρr·

√
n/(αq)(v)|v⟩;

Step 3 (Additional) Create arbitrarily polynomially many quantum states |DL,r′⟩ from poly(n) |DL,r·
√
n/(αq)⟩

states, where r
√
n/αq < r′ < r.

Step 3 appears in case the S|LWE⟩ solver in step 1 needs to consume |DL,r⟩ states. Step 3 can be done
in multiple ways, e.g., slightly modifying the GPV discrete Gaussian sampler [GPV08] to sample
|DL,r′⟩ states with r′ = r · (nω(

√
log n))/(αq). In this case we should demand αq > nω(

√
log n).

We are left with step 1 to close the reduction. In the sequel, we focus on doing step 1 and see the
S|LWE⟩ oracle we require.

Let x denote a CVPL∗,αq/r instance. Write x = κL∗(x) + x′, where κL∗(x) is the closest L∗ vector
to x, then it is guaranteed that ∥x′∥ ≤ αq/r.

According to Regev’s reduction, ⟨x,v⟩+ e (mod p) = ⟨κL∗(x),v⟩+(⟨x′,v⟩+ e) (mod p) is an LWE
instance where v is a DL,r sample, and e is sampled from Gaussian distribution to “smooth” the
discrete Gaussian ⟨x′,v⟩.
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Here we follow the same idea to prepare |LWE⟩ state through the following steps, using the discrete
Gaussian state to replace the discrete Gaussian distribution over the lattice and a pure state with
Gaussian amplitudes to replace the Gaussian error. For simplicity, let’s ignore the normalization
factors.

1. Prepare the initial state ∑
v∈L

ρr
√
2(v)|v⟩ ⊗

∑
e∈R

ρ√2σ(e)|e mod q⟩

(
∑

e∈R is not well-defined, we will build a state with enough precision to replace it.)

2. Measure L−1v mod q to get an outcome a and a result state∑
v∈qL+La

ρr
√
2(v)|v⟩ ⊗

∑
e∈R

ρ√2σ(e)|e mod q⟩

3. Apply a unitary to add the inner product ⟨x,v⟩ mod q to the second register we get∑
v∈qL+La

ρr
√
2(v)|v⟩ ⊗

∑
e∈R

ρ√2σ(e)| ⟨s,a⟩+
〈
x′,v

〉
+ e mod q⟩ (1)

where L∗s = κL∗(x) (mod p).

4. Apply QFTR to the first register where R > r
√
n is an integer:∑

y∈Zn
R

∑
v∈qL+La

ρr
√
2(v) · ω

⟨v,y⟩
R |y⟩ ⊗

∑
e∈R

ρ√2σ(e)| ⟨s,a⟩+
〈
x′,v

〉
+ e mod q⟩, (2)

5. Measure the first register to get an outcome y and a result state∑
v∈qL+La

∑
e∈R

ρr
√
2(v)ρ

√
2σ(e) · ω

⟨v,y⟩
R | ⟨s,a⟩+

〈
x′,v

〉
+ e mod q⟩. (3)

According to Theorem 11, this state is close to:

|ψ⟨s,a⟩,y⟩ :=
∑
u′∈R

ρ√
2
√

r2∥x′∥2+σ2(u
′) · e2πi·u′·θ| ⟨s,a⟩+ u′ mod q⟩, (4)

an LWE-like state whose error distribution is Gaussian distribution with a phase, where θ :=
r2⟨x′,y′/R⟩
r2∥x′∥2+σ2 , y

′/R := y/R− κ(qL)∗(y/R).

Hence, if one can solve s from |ψ⟨s,a⟩,y⟩, an |LWE⟩ with error distribution being Gaussian distribution
with a phase, then one can solve the CVPL∗,αq/r problem.

One caveat is this S|LWE⟩n,m,q,f problem has its amplitude function f(u) = ρ√
2
√

r2∥x′∥2+σ2(u) ·
e2πi·u·θ which depends on x′ and known y.

To eventually solve the CVP problem for x, it suffices to extract either the center ⟨s,a⟩, or ∥x′∥, or
the direction of x′ from the state 4. In the following sections, we will describe our attempts and
partial results.

3



Remark 5. If there is no phase (i.e. y = 0), this state can be written as∑
e′∈R

ρ√
2
√

r2∥x′∥2+σ2(e
′)| ⟨s,a⟩+ e′ mod q⟩, (5)

an |LWE⟩ with Gaussian error distribution. It is the phase that makes our |LWE⟩ nonstandard.

3 Extracting secrets from |LWE⟩ state

From now on our targets become extracting either the center ⟨s,a⟩ or ∥x′∥ or the direction of x′

from the state |ψ⟨s,a⟩,y⟩ :=
∑

u′∈R ρ√2
√

r2∥x′∥2+σ2(u
′) · e2πi·u′·θ| ⟨s,a⟩+u′ mod q⟩ with measurement

results a and y, where θ := r2⟨x′,y′/R⟩
r2∥x′∥2+σ2 , y

′/R := y/R − κ(qL)∗(y/R). If this is done then using the

reduction in Section 2.2 we can solve standard lattice problems via quantum algorithm.

3.1 Measuring the overlap of |ψ⟨s,a⟩,y⟩ and uniform to approximate ∥x′∥

Start with the case where y = 0 and no phase is involved, then our state |ψ⟨s,a⟩,0⟩ is displayed in
Equation (5). An important observation is that when ∥x′∥ is small, the mass of |ψ⟨s,a⟩,0⟩ is in a small
range, while when ∥x′∥ is large, |ψ⟨s,a⟩,0⟩ seems close to the uniform superposition |ν⟩ :=

∑
z∈Zq

|z⟩.
Hence measuring the overlap between |ψ⟨s,a⟩,0⟩ and |ν⟩ reveals whether ∥x′∥ is small or large, which
allows us to estimate ∥x′∥ within some precision.

Since the probability of getting y = 0 is negligible1, we need to take the phase into consideration.
However, the distribution of θ in the phase is “neutralizing” the above effect: the expectation of
|⟨ψ⟨s,a⟩,y|ν⟩|2 is independent of ∥x′∥.
This is not surprising since this overlap measurement does not use the measurement result y,
then measuring the second register should give the same result as measuring the second register of
Equation (1), which is equivalent to measuring the overlap between the uniform superposition and
a mixture of {

∑
e∈R ρ

√
2σ(e)| ⟨x,v⟩+ e mod q⟩}v∈qL+La, which is a constant depending on σ and q.

According to the above arguments, we need to find a way to utilize the information in the mea-
surement result y in order to extract information of x′. To better utilize y, let’s first figure out the
distribution of y, y′/R and θ in our favourite state |ψ⟨s,a⟩,y⟩.

3.2 The distribution of y

Now we give a more detailed analysis of the distribution of y obtained by measuring the register
|y⟩ in (Equation (2)):∑

y∈Zn
R

∑
v∈qL+La

ρ√2r(v) · ω
⟨v,y⟩
R |y⟩ ⊗

∑
e∈R

ρ√2σ(e)| ⟨x,v⟩+ e mod q⟩

Computing the reduced density matrix of the first register, we have the probability of measuring
y ∈ Zn

R approximately proportional to

1Actually the distribution of y is approximately proportional to ρ√
Σ−1/2

(y′/R). See Section 3.2 for more detail.
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∑
t∈[− q

2
, q
2
)

|
∑

v∈qL+La

ρ√2r(v)ρ
√
2σ(t− ⟨x,v⟩ mod q) · e2πi·⟨v,

y
R⟩|2

≈
∑

t′∈[− q
2
, q
2
)

|
∑

v∈qL+La

ρ√2r(v) · e
2πi·⟨v, yR⟩ρ√2σ(t

′ −
〈
x′,v

〉
)|2

(6)

where we can drop mod q in the approximation since we set the parameters so that, with over-
whelming probability over the randomness of e and v, t′ can be written as t′ = ⟨x′,v⟩+ e without
mod q.

One can compute with a little effort that in Equation (6) the term associated with a fixed t′ is∑
v∈qL+La

ρ√2r(v) · e
2πi·⟨v, yR⟩ρ√2σ(t

′ −
〈
x′,v

〉
)

=
∑

v∈qL+La

ρ√2Σ(v −mt′) · e2πi·⟨v,y/R⟩

=(1)

∑
w∈(qL)∗

ρ√
Σ−1/2

(w − y/R) · e2πi⟨w,La−mt′ ⟩ · e2πi·⟨mt′ ,y/R⟩

≈(2) ρ√
Σ−1/2

(y′/R) · e2πi⟨κ(qL)∗ (y/R),La−mt′⟩ · e2πi·⟨mt′ ,y/R⟩

(7)

where mt′ := r2t′

r2∥x′∥2+σ2x
′, Σ := r2I − r4x′x′T

r2∥x′∥2+σ2 , Σ−1 = I
r2

+ x′x′T

σ2 and ρ√Σ(z) := e−πzTΣ−1z

(without normalization).

(1) in Equation (7) is due to the Poisson Summation Formula. (2) in Equation (7) can be proved
by directly applying the generalized tail bound Corollary 9 for multi-variate Gaussian, proved in
the appendix, with Σ having two singular values r2 and r2 · σ2

r2∥x′∥2+σ2 .

Hence, the distribution of y is approximately proportional to ρ√
Σ−1/2

(y′/R) that only depends on

y′. Therefore the distribution of y/R can be seen as ellipsoids centered at lattice points of (qL)∗

whose direction of major axes is x′.

Moreover, one can prove that |(qL)∗ + y′/R ∩ Zn
R| is the same for all y′/R, since (qL)∗ is a sup-

lattice of 1
qZ

n and therefore the cube [−1/2, 1/2)n can be viewed as containing an integer number

of parallelepiped P((qL)∗). Hence, the distribution of y′/R is proportional to ρ√
Σ−1/2

(y′/R), i.e.,

y′/R follows a multivariate Gaussian distribution. So we can bound the length of y′/R:

∥y′∥/R ≤
√
n ·
√
r2∥x′∥2 + σ2

2σr
(8)

It follows that θ = r2⟨x′,y′/R⟩
r2∥x′∥2+σ2 in the phase of the amplitude of |ψ⟨s,a⟩,y⟩ follows the Gaussian

distribution ρβ where β := r∥x′∥
2σ
√

r2∥x′∥2+σ2
.

3.3 Where can we find the secret?

Observe that the distribution of y/R contains the information we want. To be more specific, the
shape of the support of y/R can be seen as ellipsoids centered at lattice points of (qL)∗, and the
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direction and the length of their major axes are related to x′. It seems plausible that we can utilize
y by extracting information about the secret from the distribution of y/R.

In fact, the distribution of y/R, y′/R and θ all contains information about x′:

1. The width of y′/R is inversely related to ∥x′∥. However y′/R cannot be obtained directly.
(Obtaining y′/R from y is an instance of CVP

L∗, q
√
n
√

σ2+α2q2

2σr

, which is harder than the

CVPL∗,αq/r problem we’re aiming to solve. )

2. The shape of the support of y/R is related to the direction of x′. However these ellipsoids
are cut by the boundaries of the cube [−1/2, 1/2)n, leading to a troublesome support of y/R.

3. The width of the distribution of θ is positively related to ∥x′∥. However θ cannot be obtained
directly either.

4 Bypassing |LWE⟩

The above attempt inspires us to use the distribution of our measurement results to recover useful
information. Here we no longer insist on first reducing standard lattice problems to S|LWE⟩. In
fact, we only need to give an algorithm that solves CVP using polynomial discrete Gaussian states.
Combining the algorithm with step 2 and step 3 of our plan, we can get an iterative algorithm for
standard lattice problems.

Given an instance x of CVP, we begin with discrete Gaussian state∑
v∈L

ρ√2r(v)|v⟩

Again we measure a := L−1v mod q to get our favorite state∑
v∈qL+La

ρ√2r(v)|v⟩

We apply a unitary on the state to send ⟨x,v⟩ mod q to the phase and obtain∑
v∈qL+La

ρ√2r(v) · e
2πi⟨x,v⟩

q |v⟩ (9)

Apply QFTR for R > r
√
n and we can get

|ψ⟩ :=
∑
y∈Zn

R

∑
v∈qL+La

ρ√2r(v) · e
2πi

⟨x,v⟩
q · e2πi

⟨y,v⟩
R |y⟩ (10)

From Poisson summation formula,

|ψ⟩ =
∑
y∈Zn

R

∑
w∈(qL)∗

ρ 1√
2r

(
w − x′

q
− y

R

)
· e2πi

(
⟨w,La⟩+ ⟨s,a⟩

q

)
|y⟩ (11)
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Then we measure |y⟩. The resulting vector y/R, when parsed as a rational vector in [−1/2, 1/2)n,
is expected to stay with a radius of

√
n/2r around (qL)∗ − x′

q .

Here is an intuitive idea of estimating x′. We collect many samples of y/R and then take the
average. We expect the average to be −x′

q , which is enough for solving CVP.

Unfortunately, our intuition is not valid. To be more specific, when r is large, say exponential,
then the length of the shift x′

q is less than αq
r · 1

q = α
r , which is negligible and can not be detected

by efficient algorithms. We can also start from some special lattices such that initially r is small,
say polynomial, but then the intersection between the boundary of [−1/2, 1/2)n and the balls of
radius

√
n/2r around (qL)∗ − x′

q becomes annoying and thus the average of y/R is not −x′

q .
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A Appendix

A.1 An extension of Banaszczyk’s Gaussian tail bounds over lattices

Recall Banaszczyk’s Gaussian tail bounds:

Lemma 6 (Lemma 1.5 [Ban93]). For any n-dimensional lattice L, c ∈ Rn, and r ≥ 1√
2π
,

ρ((L− c) \ r
√
nBn

2 ) < 2
(
r
√
2πe · e−πr2

)n
ρ(L).

We extend this tail bounds’ RHS to an aribitrary shift of the lattice:

Lemma 7. For any n-dimensional lattice L, such that λ1(L) > 3
√
n, and any y ∈ Rn such that

dist(y, L) <
√
n, we have

ρ((L− y) \ λ1(L)
2

·Bn
2 ) < 2−nρ(L− y). (12)
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Proof. First we prove that since λ1(L) > 3
√
n, we have ρ(L) < 1 + 2−n. To do so, we apply

Lemma 6 with c = 0 and r
√
n = λ1(L)/2, which gives

ρ(L \ λ1(L)
2

·Bn
2 ) < 2

(
λ1(L)

2
√
n

√
2πe · e−π

(
λ1(L)

2
√
n

)2)n

· ρ(L)

= 2 · en ln(λ1(L)/
√
n)−πλ1(L)2/4+n ln

√
πe/2 · ρ(L)

(13)

Let λ1(L) = x ·
√
n, then consider the function

f(x) := ln(x)− πx2/4 + ln(
√
πe/2) (14)

The derivative of f is
f ′(x) = 1/x− πx/2 (15)

Therefore when x >
√
2/π, f is decreasing. When x > 3, f(x) < −5.24.

Hence if λ1(L) > 3
√
n,

ρ(L \ λ1(L)
2

·Bn
2 ) < 2 · e−5.24n · ρ(L),

which means ρ(L) < 1 + 2−n

We continue proving Lemma 7 by applying Lemma 6 with c = y and r
√
n = λ1(L)/2. This gives

ρ((L− y) \ λ1(L)
2

·Bn
2 ) < 2

(
λ1(L)

√
πe√

2n

)n

· e−πλ1(L)2/4ρ(L)

<(1) 3

(
λ1(L)

√
πe√

2n

)n

· e−πλ1(L)2/4

(16)

where (1) uses ρ(L) < 1 + 2−n.

Let y′ = y − κL(y), then ∥y′∥ = dist(y, L) <
√
n. Then

ρ((L− y) \ λ1(L)
2 ·Bn

2 )

ρ(y′)
< 3e

n ln
(

λ1(L)
√
πe√

2n

)
−πλ1(L)2/4+π∥y′∥2

< 3en ln(λ1(L)/
√
n)−πλ1(L)2/4+nπ+n ln

√
πe/2

< (1)3e
n ln(3)− 9

4
nπ+nπ+n ln

√
πe/2

= 3en(ln 3− 5
4
π+ln

√
πe/2),

(17)

where (1) is obtained by taking the derivative similar as before: let λ1(L) = x ·
√
n, then consider

the function
g(x) := ln(x)− πx2/4 + ln(

√
πe/2) + π (18)

The derivative of g is
g′(x) = 1/x− πx/2 (19)

Therefore when x >
√
2/π, g is decreasing. When x > 3, g(x) < −2.1.
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Hence when λ1(L) > 3
√
n and ∥y′∥ <

√
n,

ρ((L− y) \ λ1(L)
2 ·Bn

2 )

ρ(y′)
< 2−2n.

Since ρ(L− y) = ρ((L− y) \ λ1(L)
2 ·Bn

2 ) + ρ(y′), we have

ρ((L− y) \ λ1(L)
2

·Bn
2 ) < 2−nρ(L− y). (20)

For technical reasons, we need a variant of Lemma 7:

Lemma 8. For any n-dimensional lattice L and any y ∈ Rn, such that λ1(L) > 3dist(y, L)/d and
λ1(L) > 3

√
n, we have

ρ((L− y) \ λ1(L)
2

·Bn
2 ) < 2−nρd(L− y). (21)

Remark: we can treat d as minor axis / major axis, which is less than 1.

Proof. First we prove that since λ1(L) > 3
√
n, we have ρ(L) < 1 + 2−n. To do so, we apply

Lemma 6 with c = 0 and r
√
n = λ1(L)/2, which gives

ρ(L \ λ1(L)
2

·Bn
2 ) < 2

(
λ1(L)

2
√
n

√
2πe · e−π

(
λ1(L)

2
√
n

)2)n

· ρ(L)

= 2 · en ln(λ1(L)/
√
n)−πλ1(L)2/4+n ln

√
πe/2 · ρ(L)

(22)

Let λ1(L) = x ·
√
n, then consider the function

f(x) := ln(x)− πx2/4 + ln(
√
πe/2) (23)

The derivative of f is
f ′(x) = 1/x− πx/2 (24)

Therefore when x >
√
2/π, f is decreasing. When x > 3, f(x) < −5.24.

Hence if λ1(L) > 3
√
n,

ρ(L \ λ1(L)
2

·Bn
2 ) < 2 · e−5.24n · ρ(L),

which means ρ(L) < 1 + 2−n

We continue proving Lemma 8 by applying Lemma 6 with c = y and r
√
n = λ1(L)/2. This gives

ρ((L− y) \ λ1(L)
2

·Bn
2 ) < 2

(
λ1(L)

√
πe√

2n

)n

· e−πλ1(L)2/4ρ(L)

<(1) 3

(
λ1(L)

√
πe√

2n

)n

· e−πλ1(L)2/4

(25)
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where (1) uses ρ(L) < 1 + 2−n.

Let y′ = y − κL(y), then ∥y′∥/d = dist(y, L)/d < λ1(L)/3. Then

ρ((L− y) \ λ1(L)
2 ·Bn

2 )

ρd(y′)
< 3e

n ln
(

λ1(L)
√

πe√
2n

)
−πλ1(L)2/4+π∥y′∥2/d2

< 3en ln(λ1(L)/
√
n)−πλ1(L)2/4+πλ1(L)2/9+n ln

√
πe/2

< (1)3e
n ln(3)− 9

4
nπ+nπ+n ln

√
πe/2

= 3en(ln 3− 5
4
π+ln

√
πe/2),

(26)

where (1) is obtained by taking the derivative similar as before: let λ1(L) = x ·
√
n, then consider

the function
g(x) := ln(x)− 5πx2/36 + ln(

√
πe/2) (27)

The derivative of g is
g′(x) = 1/x− 5πx/18 (28)

Therefore when x >
√

18
5π , g is decreasing. When x > 3, g(x) < −2.1.

Hence when λ1(L) > 3dist(y, L)/d and λ1(L) > 3
√
n,

ρ((L− y) \ λ1(L)
2 ·Bn

2 )

ρd(y′)
< 2−2n.

Since ρd(L− y) = ρd((L− y) \ λ1(L)
2 ·Bn

2 ) + ρd(y
′), we have

ρ((L− y) \ λ1(L)
2

·Bn
2 ) < 2−nρd(L− y). (29)

Corollary 9. For any n-dimensional lattice L, any y ∈ Rn and any symmetric and positive matrix
Σ whose smallest singular value is a2 and whose largest singular value is b2, such that λ1(L) >
3b
a dist(y, L) and λ1(L) > 3

√
n/a, we have

ρΣ−1((L− y) \ λ1(L)
2

·Bn
2 ) ≤ ρ 1

a
((L− y) \ λ1(L)

2
·Bn

2 ) < 2−nρ 1
b
(L− y) ≤ 2−nρΣ−1(L− y). (30)

A.2 Smoothing of Gaussian with a phase

We generalize [Reg09, Claim 3.9] to handle Gaussian function with a phase.

Theorem 10. Let L be a lattice, u ∈ Rn be any vector, r, s > 0 be any real numbers, t :=
√
r2 + s2.

Consider the function Y on x ∈ Rn as the convolution of

1. y with support L+ u and amplitude h(y) := ρr(y) · e2πi·⟨y,z⟩ for some fixed z ∈ Rn such that
d(z, L∗) < t

rs

√
n;

10



2. A noise vector taken from ρs.

Suppose rs
t λ1(L

∗) > 3
√
n. Then Y (x) ≈ ρt(x) · e2πi·(r/t)

2⟨z−κL∗ (z),x⟩.

Proof. The function Y can be written as

Y (x) =
∑

y∈L+u

h(y)ρs(x− y)

=
∑

y∈L+u

exp

(
−π
(
∥y∥2

r2
+

∥x− y∥2

s2

))
· e2πi·⟨y,z⟩

= exp

(
− π

r2 + s2
∥x∥2

) ∑
y∈L+u

exp

(
−π
(
t

rs

)2

· ∥y − r2

t2
x∥2
)

· e2πi·⟨y,z⟩

= ρt(x) ·
∑

y∈L+u

exp

(
−π
(
t

rs

)2

· ∥y − r2

t2
x∥2
)

· e2πi·⟨y,z⟩

(31)

For any y ∈ Rn, let g(y) := ρ rs
t
(y) · e2πi·⟨y,z⟩. Then

ĝ(w) = ρ t
rs
(w − z)

Then

∑
y∈L+u

exp

(
−π
(
t

rs

)2

· ∥y − r2

t2
x∥2
)

· e2πi·⟨y,z⟩

=
∑
y∈L

ρ rs
t

(
y + u− r2

t2
x

)
· e2πi·⟨y+u,z⟩

=
∑
y∈L

g(y + u− r2

t2
x) · e2πi·

〈
r2

t2
x,z

〉

=(1)

∑
w∈L∗

ĝ(w) · e2πi·⟨u−(r/t)2x,w⟩ · e2πi·
〈

r2

t2
x,z

〉

=
∑
w∈L∗

ρt/rs(w − z) · e2πi·(⟨u,w⟩−⟨(r/t)2x,w−z⟩)

(32)

where (1) uses Poisson Summation Formula (ignoring the normalization factor (rs/t)n det(L∗)).

Applying Lemma 7 with the lattice L being rs
t L

∗ here, which is rs
t (qL)

∗ in the main theorem; the
vector y being rs

t · z, which is rs
t · y

R in the main theorem; λ1(L) being rs
t λ1(L

∗) here, which is
rs
tqλ1(L

∗) in the main theorem.

Recall that s∥x′∥ = σ and t =
√
r2 + s2. dist(y, L) in Lemma 7 satisfies

dist(y, L) <
√
n ·
√
σ2 + r2∥x′∥2

σr
· rs
t

=
√
n ·
√
(s∥x′∥)2 + r2∥x′∥2

s∥x′∥r
· rs√

r2 + s2
=

√
n

11



Back to Eqn. (32), when rs
t >

3
√
n

λ1(L∗) and ∥z′∥ < t
√
n

rs with z′ := z− κL∗(z), we have∑
w∈L∗

ρt/rs(w − z) · e2πi·(⟨u,w⟩−⟨(r/t)2x,w−z⟩) ≈ ρt/rs(z
′) · e2πi·(⟨u,κL∗ (z)⟩+⟨(r/t)2x,z′⟩) (33)

Then Y (x) ∝ ρt(x) · e2πi·(r/t)
2⟨z−κL∗ (z),x⟩.

A.3 Linear combination of continuous Gaussian with a phase

Theorem 11. For any x ∈ Rn such that ∥x∥ > 0. Suppose the amplitude of v ∈ Rn is f(v) =
ρr(v) · e2πi(⟨v,y⟩+w) for some fixed y ∈ Rn and w ∈ R, then the amplitude of u := ⟨x,v⟩ is

g(u) = λ · ρ∥x∥·r(u) · e
2πi·u· ⟨x,y⟩

∥x∥2 . (34)

where λ is some fixed complex number.

Proof. Let v′ ∈ Rn be any real vector such that ⟨v′,y⟩ = w. Then the amplitude of v ∈ Rn can be
written as

f(v) = ρr(v) · e2πi⟨v+v′,y⟩ (35)

For j ∈ [n], let gj denote the amplitude of uj := xj · vj . Then, when xj = 0, gj = δ0 · e2πi·v
′
j ·yj ,

where δ denotes the indicator function; when xj ̸= 0,

gj(uj) = ρxj ·r(uj) · e
2πi·(uj ·yj/xj)+v′j ·yj (36)

Then the Fourier transform of gj is

ĝj(z) =

{
e2πi·v

′
j ·yj when xj = 0;

e−πr2(xi·z−yi)
2 · e2πi·v

′
j ·yj when xj ̸= 0;

(37)

So the product of ĝ1, ..., ĝn is

ĝ(z) :=
n∏

j=1

ĝj(z) = e−πr2(∥x∥2·z2−2⟨x,y⟩·z+δ) · e2πi·w = e−πr2∥x∥2·(z−θ)2+δ′ · e2πi·w (38)

where δ and δ′ are some real numbers that does not depend on x, θ = ⟨x,y⟩
∥x∥2 is a real number that

depends on x.

Then the amplitude of u := ⟨x,v⟩ ∈ R is the convolution of gj , which is the Fourier transform of
ĝ. So the amplitude of u is

g(u) = ˆ̂g(u) = λ · ρ∥x∥·r(u) · e2πi·u·θ. (39)

where λ is some fixed complex number.
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