Attempts to Quantumly Solve Standard Lattice Problems: Reduction from Standard Lattice Problems to $\mathsf{S}|\mathsf{LWE}\rangle$ and Beyond

Zihan Hu, Yaxin Tu (Authors of this note) (D

Yilei Chen (Dear advisor) Qipeng Liu (Dear collaborator)

December 21, 2022

Contents

1	Intr	oduction	1
2	Quantum reduction from Standard Lattice Problems to $S LWE\rangle$		1
	2.1	Summary of Regev's reduction [Reg09]	1
	2.2	Modifying Regev's reduction	2
3	Extracting secrets from $ LWE\rangle$ state		4
	3.1	Measuring the overlap of $ \psi_{\langle \mathbf{s}, \mathbf{a} \rangle, \mathbf{y}} \rangle$ and uniform to approximate $\ \mathbf{x}'\ $	4
	3.2	The distribution of \mathbf{y}	4
	3.3	Where can we find the secret?	5
4	$\mathbf{Bypassing} \ket{LWE}$		6
A	Appendix		7
	A.1	An extension of Banaszczyk's Gaussian tail bounds over lattices	7
	A.2	Smoothing of Gaussian with a phase	10
	A.3	Linear combination of continuous Gaussian with a phase	12

1 Introduction

In this note, we summarize our partial results on quantumly solving standard lattice problems.

Solving standard lattice problems has been a target for designing efficient quantum algorithms for decades. Regev [Reg09] shows given a polynomial time algorithm that solves $LWE_{n,m,q,\mathcal{D}_{noise}}$ where \mathcal{D}_{noise} is Gaussian and m can be any polynomial, one can construct a quantum algorithm that solves standard lattice problems.

Here let us consider the following quantum variant of the LWE problem called solving LWE given LWE-like states $(S|LWE\rangle)$.

Definition 1 (Solving LWE given LWE-like quantum states $(S|LWE\rangle)$). Let n, m, q be positive integers. Let f be a function from \mathbb{Z}_q to \mathbb{R} . Let $u \in \mathbb{Z}_q^n$ be a secret vector. The problem of solving LWE given LWE-like states $S|LWE\rangle_{n,m,q,f}$ asks to find u given access to an oracle that outputs a_i , $\sum_{e_i \in \mathbb{Z}_q} f(e_i)|a_i \cdot u + e_i \pmod{q}\rangle$ on its i^{th} query, for i = 1, ..., m. Here each a_i is a uniformly random vector in \mathbb{Z}_q^n .

 $\mathsf{S}|\mathsf{LWE}\rangle_{n,m,q,\sqrt{D_{\mathsf{noise}}}}$ is easier to solve than $\mathsf{LWE}_{n,m,q,D_{\mathsf{noise}}}$, because we can get (classical) LWE samples by measuring $|\mathsf{LWE}\rangle$ in computational basis. Recent work [CLZ21] shows when the noise amplitude f is of a special kind, we can solve $\mathsf{S}|\mathsf{LWE}\rangle$ in quantum polynomial time.

Theorem 2 ([CLZ21]). When the noise distribution f is chosen such that \hat{f} is non-negligible over \mathbb{Z}_q , then we can solve $\mathsf{S}|\mathsf{LWE}\rangle_{n.m.a.f}$ in quantum polynomial time.

Given the 'feasibility' of solving $S|LWE\rangle$, one plausible roadmap towards solving standard lattice problems is first to modify Regev's reduction (from standard lattice problems to LWE) to a reduction from standard lattice problems to $S|LWE\rangle$, and then solve the $S|LWE\rangle$ problem. The key point is that the noise amplitude f in $S|LWE\rangle$ should on one hand be 'strong' enough so that the $S|LWE\rangle$ oracle can solve standard lattice problems, but on the other hand be 'weak' enough so that the $S|LWE\rangle$ problem is solvable by polynomial quantum algorithms.

2 Quantum reduction from Standard Lattice Problems to $S|LWE\rangle$

In this section, we'll show how to obtain a quantum reduction from standard lattice problems to $S|LWE\rangle$, by modifying Regev's reduction.

2.1 Summary of Regev's reduction [Reg09]

Let's start by recalling the details of Regev's reduction. Many standard lattice problems can be reduced to sampling from the discrete Gaussian distribution $(D_{L,r})$ of a nontrivial width r over the lattice L. With the help of an LWE solver, one can construct a procedure sampling from $D_{L,r}$ given samples from $D_{L,r\cdot c}$ with c > 1, and hence can start with samples from extremely wide $D_{L,R}$ (which can be obtained through, say, LLL-algorithm) and end up with samples from $D_{L,r}$ with a nontrivial (say, polynomial) width r. The precise procedure contains two subroutines: Step 1 (Classical, uses LWE) Given an instance of $\mathsf{CVP}_{L^*,\alpha q/(\sqrt{2}r)}$, using $\mathsf{poly}(n)$ samples from $D_{L,r}$ to create LWE samples with Gaussian noise with width $\leq \alpha q$, and then solve it with an LWE solver which in turn solves the $\mathsf{CVP}_{L^*,\alpha q/(\sqrt{2}r)}$ problem:

Theorem 3 ([Reg09]). Suppose $m \in poly(n)$, q be an integer, $\alpha \in (0, 1)$ be a real number and $r > \sqrt{2}q\eta_{\epsilon}(L)$ satisfying some smoothing condition with $\epsilon \in negl(n)$. There exists an efficient (classical) algorithm that, given an oracle that solves LWE_{n,m,q,q Ψ_{α}} and poly(n,m) samples from $D_{L,r}$, solves $CVP_{L^*,\alpha q/(\sqrt{2}r)}$, where Ψ_{α} denotes the periodic Gaussian distribution and $q\Psi_{\alpha}$ stands for scaling it by q.

Step 2 (Quantum) Using a $\mathsf{CVP}_{L^*, \alpha q/(\sqrt{2}r)}$ solver to generate $\mathsf{poly}(n)$ discrete Gaussian states $|D_{L, r \cdot \sqrt{n}/(\alpha q)}\rangle = \sum_{\mathbf{v} \in L} \sqrt{\rho_{r \cdot \sqrt{n}/(\alpha q)}(\mathbf{v})} |\mathbf{v}\rangle$ and measure them to get $\mathsf{poly}(n)$ classical samples from $D_{L, r \sqrt{n}/\alpha q}$:

Theorem 4 ([Reg09]). There exists an efficient quantum algorithm that, given any n-dimensional lattice L, a number $d < \lambda_1(L^*)/2$, and an oracle that solves $\text{CVP}_{L^*,d}$, outputs $|D_{L,\sqrt{n}/(\sqrt{2}d)}\rangle$.

These two subroutines allow us to transform the distribution $D_{L,r}$ to a narrower distribution $D_{L,r\cdot\sqrt{n}/(\alpha q)}$, and hence solve the discrete Gaussian sampling problem whenever $\alpha q/\sqrt{n} > 1$.

2.2 Modifying Regev's reduction

Notice that the quantum part of the iterative algorithm actually produces discrete Gaussian states instead of just classical samples. This gives us hope to construct a procedure sampling $|D_{L,r}\rangle$ states, given $|D_{L,r\cdot c}\rangle(c > 1)$ states and an S|LWE \rangle solver. The procedure is as follows:

- Step 1 (Uses $S|LWE\rangle$) Given an instance of $CVP_{L^*,\alpha q/r}$, using poly(n) discrete Gaussian states $|D_{L,r}\rangle$ to create an $S|LWE\rangle_{n,m,q,f}$ instance with certain f, and then solve it with an $S|LWE\rangle_{n,m,q,f}$ solver which in turn solves the $CVP_{L^*,\alpha q/r}$ problem;
- Step 2 (Same as the quantum step in Regev's reduction) Using a $\mathsf{CVP}_{L^*, \alpha q/(\sqrt{2}r)}$ solver to generate $\mathsf{poly}(n)$ discrete Gaussian states $|D_{L,r\cdot\sqrt{n}/(\alpha q)}\rangle = \sum_{\mathbf{v}\in L} \sqrt{\rho_{r\cdot\sqrt{n}/(\alpha q)}(\mathbf{v})}|\mathbf{v}\rangle;$
- Step 3 (Additional) Create arbitrarily polynomially many quantum states $|D_{L,r'}\rangle$ from $poly(n) |D_{L,r\cdot\sqrt{n}/(\alpha q)}\rangle$ states, where $r\sqrt{n}/\alpha q < r' < r$.

Step 3 appears in case the S|LWE solver in step 1 needs to consume $|D_{L,r}\rangle$ states. Step 3 can be done in multiple ways, e.g., slightly modifying the GPV discrete Gaussian sampler [GPV08] to sample $|D_{L,r'}\rangle$ states with $r' = r \cdot (n\omega(\sqrt{\log n}))/(\alpha q)$. In this case we should demand $\alpha q > n\omega(\sqrt{\log n})$.

We are left with step 1 to close the reduction. In the sequel, we focus on doing step 1 and see the $S|LWE\rangle$ oracle we require.

Let \mathbf{x} denote a $\mathsf{CVP}_{L^*, \alpha q/r}$ instance. Write $\mathbf{x} = \kappa_{L^*}(\mathbf{x}) + \mathbf{x}'$, where $\kappa_{L^*}(\mathbf{x})$ is the closest L^* vector to \mathbf{x} , then it is guaranteed that $\|\mathbf{x}'\| \leq \alpha q/r$.

According to Regev's reduction, $\langle \mathbf{x}, \mathbf{v} \rangle + e \pmod{p} = \langle \kappa_{L^*}(\mathbf{x}), \mathbf{v} \rangle + (\langle \mathbf{x}', \mathbf{v} \rangle + e) \pmod{p}$ is an LWE instance where \mathbf{v} is a $D_{L,r}$ sample, and e is sampled from Gaussian distribution to "smooth" the discrete Gaussian $\langle \mathbf{x}', \mathbf{v} \rangle$.

Here we follow the same idea to prepare $|LWE\rangle$ state through the following steps, using the discrete Gaussian state to replace the discrete Gaussian distribution over the lattice and a pure state with Gaussian amplitudes to replace the Gaussian error. For simplicity, let's ignore the normalization factors.

1. Prepare the initial state

$$\sum_{\mathbf{v}\in L}\rho_{r\sqrt{2}}(\mathbf{v})|\mathbf{v}\rangle\otimes\sum_{e\in\mathbb{R}}\rho_{\sqrt{2}\sigma}(e)|e \bmod q\rangle$$

 $(\sum_{e \in \mathbb{R}} \text{ is not well-defined, we will build a state with enough precision to replace it.})$

2. Measure $L^{-1}\mathbf{v} \mod q$ to get an outcome **a** and a result state

$$\sum_{\mathbf{v} \in qL + L\mathbf{a}} \rho_{r\sqrt{2}}(\mathbf{v}) | \mathbf{v} \rangle \otimes \sum_{e \in \mathbb{R}} \rho_{\sqrt{2}\sigma}(e) | e \bmod q \rangle$$

3. Apply a unitary to add the inner product $\langle \mathbf{x}, \mathbf{v} \rangle \mod q$ to the second register we get

$$\sum_{\mathbf{v}\in qL+L\mathbf{a}}\rho_{r\sqrt{2}}(\mathbf{v})|\mathbf{v}\rangle\otimes\sum_{e\in\mathbb{R}}\rho_{\sqrt{2}\sigma}(e)|\langle\mathbf{s},\mathbf{a}\rangle+\langle\mathbf{x}',\mathbf{v}\rangle+e \bmod q\rangle \tag{1}$$

where $L^* \mathbf{s} = \kappa_{L^*} (\mathbf{x}) \pmod{p}$.

4. Apply QFT_R to the first register where $R > r\sqrt{n}$ is an integer:

$$\sum_{\mathbf{y}\in\mathbb{Z}_R^n}\sum_{\mathbf{v}\in qL+L\mathbf{a}}\rho_{r\sqrt{2}}(\mathbf{v})\cdot\omega_R^{\langle\mathbf{v},\mathbf{y}\rangle}|\mathbf{y}\rangle\otimes\sum_{e\in\mathbb{R}}\rho_{\sqrt{2}\sigma}(e)|\langle\mathbf{s},\mathbf{a}\rangle+\langle\mathbf{x}',\mathbf{v}\rangle+e \bmod q\rangle,\tag{2}$$

5. Measure the first register to get an outcome \mathbf{y} and a result state

$$\sum_{\mathbf{v} \in qL + L\mathbf{a}} \sum_{e \in \mathbb{R}} \rho_{r\sqrt{2}}(\mathbf{v}) \rho_{\sqrt{2}\sigma}(e) \cdot \omega_R^{\langle \mathbf{v}, \mathbf{y} \rangle} |\langle \mathbf{s}, \mathbf{a} \rangle + \langle \mathbf{x}', \mathbf{v} \rangle + e \mod q \rangle.$$
(3)

According to Theorem 11, this state is close to:

$$|\psi_{\langle \mathbf{s}, \mathbf{a} \rangle, \mathbf{y}} \rangle := \sum_{u' \in \mathbb{R}} \rho_{\sqrt{2}\sqrt{r^2 \|\mathbf{x}'\|^2 + \sigma^2}}(u') \cdot e^{2\pi i \cdot u' \cdot \theta} |\langle \mathbf{s}, \mathbf{a} \rangle + u' \mod q \rangle, \tag{4}$$

an LWE-like state whose error distribution is Gaussian distribution with a phase, where $\theta := \frac{r^2 \langle \mathbf{x}', \mathbf{y}'/R \rangle}{r^2 ||\mathbf{x}'||^2 + \sigma^2}, \, \mathbf{y}'/R := \mathbf{y}/R - \kappa_{(qL)*}(\mathbf{y}/R).$

Hence, if one can solve **s** from $|\psi_{\langle \mathbf{s}, \mathbf{a} \rangle, \mathbf{y}} \rangle$, an $|\mathsf{LWE}\rangle$ with error distribution being Gaussian distribution with a phase, then one can solve the $\mathsf{CVP}_{L^*, \alpha q/r}$ problem.

One caveat is this $\mathsf{S}|\mathsf{LWE}\rangle_{n,m,q,f}$ problem has its amplitude function $f(u) = \rho_{\sqrt{2}\sqrt{r^2}||\mathbf{x}'||^2 + \sigma^2}(u) \cdot e^{2\pi i \cdot u \cdot \theta}$ which depends on \mathbf{x}' and known \mathbf{y} .

To eventually solve the CVP problem for \mathbf{x} , it suffices to extract either the center $\langle \mathbf{s}, \mathbf{a} \rangle$, or $\|\mathbf{x}'\|$, or the direction of \mathbf{x}' from the state 4. In the following sections, we will describe our attempts and partial results.

Remark 5. If there is no phase (i.e. y = 0), this state can be written as

$$\sum_{e' \in \mathbb{R}} \rho_{\sqrt{2}\sqrt{r^2 \|\mathbf{x}'\|^2 + \sigma^2}}(e') |\langle \mathbf{s}, \mathbf{a} \rangle + e' \bmod q \rangle, \tag{5}$$

an $|LWE\rangle$ with Gaussian error distribution. It is the phase that makes our $|LWE\rangle$ nonstandard.

3 Extracting secrets from $|LWE\rangle$ state

From now on our targets become extracting either the center $\langle \mathbf{s}, \mathbf{a} \rangle$ or $\|\mathbf{x}'\|$ or the direction of \mathbf{x}' from the state $|\psi_{\langle \mathbf{s}, \mathbf{a} \rangle, \mathbf{y}} \rangle := \sum_{u' \in \mathbb{R}} \rho_{\sqrt{2}\sqrt{r^2 \|\mathbf{x}'\|^2 + \sigma^2}}(u') \cdot e^{2\pi i \cdot u' \cdot \theta} |\langle \mathbf{s}, \mathbf{a} \rangle + u' \mod q \rangle$ with measurement results \mathbf{a} and \mathbf{y} , where $\theta := \frac{r^2 \langle \mathbf{x}', \mathbf{y}'/R \rangle}{r^2 \|\mathbf{x}'\|^2 + \sigma^2}, \mathbf{y}'/R := \mathbf{y}/R - \kappa_{(qL)*}(\mathbf{y}/R)$. If this is done then using the reduction in Section 2.2 we can solve standard lattice problems via quantum algorithm.

3.1 Measuring the overlap of $|\psi_{\langle \mathbf{s}, \mathbf{a} \rangle, \mathbf{y}} \rangle$ and uniform to approximate $\|\mathbf{x}'\|$

Start with the case where $\mathbf{y} = \mathbf{0}$ and no phase is involved, then our state $|\psi_{\langle \mathbf{s}, \mathbf{a} \rangle, \mathbf{0}} \rangle$ is displayed in Equation (5). An important observation is that when $\|\mathbf{x}'\|$ is small, the mass of $|\psi_{\langle \mathbf{s}, \mathbf{a} \rangle, \mathbf{0}} \rangle$ is in a small range, while when $\|\mathbf{x}'\|$ is large, $|\psi_{\langle \mathbf{s}, \mathbf{a} \rangle, \mathbf{0}} \rangle$ seems close to the uniform superposition $|\nu\rangle := \sum_{z \in \mathbb{Z}_q} |z\rangle$. Hence measuring the overlap between $|\psi_{\langle \mathbf{s}, \mathbf{a} \rangle, \mathbf{0}} \rangle$ and $|\nu\rangle$ reveals whether $\|\mathbf{x}'\|$ is small or large, which allows us to estimate $\|\mathbf{x}'\|$ within some precision.

Since the probability of getting $\mathbf{y} = \mathbf{0}$ is negligible¹, we need to take the phase into consideration. However, the distribution of θ in the phase is "neutralizing" the above effect: the expectation of $|\langle \psi_{\langle \mathbf{s}, \mathbf{a} \rangle, \mathbf{y}} | \nu \rangle|^2$ is independent of ||x'||.

This is not surprising since this overlap measurement does not use the measurement result \mathbf{y} , then measuring the second register should give the same result as measuring the second register of Equation (1), which is equivalent to measuring the overlap between the uniform superposition and a mixture of $\{\sum_{e \in \mathbb{R}} \rho_{\sqrt{2}\sigma}(e) | \langle \mathbf{x}, \mathbf{v} \rangle + e \mod q \rangle\}_{\mathbf{v} \in qL+L\mathbf{a}}$, which is a constant depending on σ and q.

According to the above arguments, we need to find a way to utilize the information in the measurement result \mathbf{y} in order to extract information of \mathbf{x}' . To better utilize \mathbf{y} , let's first figure out the distribution of \mathbf{y} , \mathbf{y}'/R and θ in our favourite state $|\psi_{\langle \mathbf{s}, \mathbf{a} \rangle, \mathbf{y}} \rangle$.

3.2 The distribution of y

Now we give a more detailed analysis of the distribution of \mathbf{y} obtained by measuring the register $|\mathbf{y}\rangle$ in (Equation (2)):

$$\sum_{\mathbf{y} \in \mathbb{Z}_R^n} \sum_{\mathbf{v} \in qL + L\mathbf{a}} \rho_{\sqrt{2}r}(\mathbf{v}) \cdot \omega_R^{\langle \mathbf{v}, \mathbf{y} \rangle} |\mathbf{y}\rangle \otimes \sum_{e \in \mathbb{R}} \rho_{\sqrt{2}\sigma}(e) |\langle \mathbf{x}, \mathbf{v} \rangle + e \bmod q \rangle$$

Computing the reduced density matrix of the first register, we have the probability of measuring $\mathbf{y} \in \mathbb{Z}_{R}^{n}$ approximately proportional to

¹Actually the distribution of **y** is approximately proportional to $\rho_{\sqrt{\Sigma^{-1}/2}}(\mathbf{y}'/R)$. See Section 3.2 for more detail.

$$\sum_{t \in [-\frac{q}{2}, \frac{q}{2})} |\sum_{\mathbf{v} \in qL + L\mathbf{a}} \rho_{\sqrt{2}r}(\mathbf{v}) \rho_{\sqrt{2}\sigma}(t - \langle \mathbf{x}, \mathbf{v} \rangle \mod q) \cdot e^{2\pi i \cdot \langle \mathbf{v}, \frac{\mathbf{v}}{R} \rangle}|^{2}$$

$$\approx \sum_{t' \in [-\frac{q}{2}, \frac{q}{2})} |\sum_{\mathbf{v} \in qL + L\mathbf{a}} \rho_{\sqrt{2}r}(\mathbf{v}) \cdot e^{2\pi i \cdot \langle \mathbf{v}, \frac{\mathbf{v}}{R} \rangle} \rho_{\sqrt{2}\sigma}(t' - \langle \mathbf{x}', \mathbf{v} \rangle)|^{2}$$
(6)

where we can drop mod q in the approximation since we set the parameters so that, with overwhelming probability over the randomness of e and \mathbf{v} , t' can be written as $t' = \langle \mathbf{x}', \mathbf{v} \rangle + e$ without mod q.

One can compute with a little effort that in Equation (6) the term associated with a fixed t' is

$$\sum_{\mathbf{v}\in qL+L\mathbf{a}} \rho_{\sqrt{2}r}(\mathbf{v}) \cdot e^{2\pi i \cdot \langle \mathbf{v}, \frac{\mathbf{y}}{R} \rangle} \rho_{\sqrt{2}\sigma}(t' - \langle \mathbf{x}', \mathbf{v} \rangle)$$

$$= \sum_{\mathbf{v}\in qL+L\mathbf{a}} \rho_{\sqrt{2\Sigma}}(\mathbf{v} - \mathbf{m}_{t'}) \cdot e^{2\pi i \cdot \langle \mathbf{v}, \mathbf{y}/R \rangle}$$

$$=_{(1)} \sum_{\mathbf{w}\in (qL)^{*}} \rho_{\sqrt{\Sigma^{-1}/2}}(\mathbf{w} - \mathbf{y}/R) \cdot e^{2\pi i \langle \mathbf{w}, L\mathbf{a} - \mathbf{m}_{t'} \rangle} \cdot e^{2\pi i \cdot \langle \mathbf{m}_{t'}, \mathbf{y}/R \rangle}$$

$$\approx_{(2)} \rho_{\sqrt{\Sigma^{-1}/2}}(\mathbf{y}'/R) \cdot e^{2\pi i \langle \kappa_{(qL)^{*}}(\mathbf{y}/R), L\mathbf{a} - \mathbf{m}_{t'} \rangle} \cdot e^{2\pi i \cdot \langle \mathbf{m}_{t'}, \mathbf{y}/R \rangle}$$

$$(7)$$

where $\mathbf{m}_{t'} := \frac{r^2 t'}{r^2 \|\mathbf{x}'\|^2 + \sigma^2} \mathbf{x}'$, $\Sigma := r^2 I - \frac{r^4 \mathbf{x}' \mathbf{x}'^T}{r^2 \|\mathbf{x}'\|^2 + \sigma^2}$, $\Sigma^{-1} = \frac{I}{r^2} + \frac{\mathbf{x}' \mathbf{x}'^T}{\sigma^2}$ and $\rho_{\sqrt{\Sigma}}(\mathbf{z}) := e^{-\pi \mathbf{z}^T \Sigma^{-1} \mathbf{z}}$ (without normalization).

(1) in Equation (7) is due to the Poisson Summation Formula. (2) in Equation (7) can be proved by directly applying the generalized tail bound Corollary 9 for multi-variate Gaussian, proved in the appendix, with Σ having two singular values r^2 and $r^2 \cdot \frac{\sigma^2}{r^2 \|\mathbf{x}'\|^2 + \sigma^2}$.

Hence, the distribution of \mathbf{y} is approximately proportional to $\rho_{\sqrt{\Sigma^{-1}/2}}(\mathbf{y}'/R)$ that only depends on \mathbf{y}' . Therefore the distribution of \mathbf{y}/R can be seen as ellipsoids centered at lattice points of $(qL)^*$ whose direction of major axes is \mathbf{x}' .

Moreover, one can prove that $|(qL)^* + \mathbf{y}'/R \cap \mathbb{Z}_R^n|$ is the same for all \mathbf{y}'/R , since $(qL)^*$ is a suplattice of $\frac{1}{q}\mathbb{Z}^n$ and therefore the cube $[-1/2, 1/2)^n$ can be viewed as containing an integer number of parallelepiped $\mathcal{P}((qL)^*)$. Hence, the distribution of \mathbf{y}'/R is proportional to $\rho_{\sqrt{\Sigma^{-1}/2}}(\mathbf{y}'/R)$, i.e., \mathbf{y}'/R follows a multivariate Gaussian distribution. So we can bound the length of \mathbf{y}'/R :

$$\|\mathbf{y}'\|/R \le \sqrt{n} \cdot \frac{\sqrt{r^2 \|\mathbf{x}'\|^2 + \sigma^2}}{2\sigma r}$$
(8)

It follows that $\theta = \frac{r^2 \langle \mathbf{x}', \mathbf{y}'/R \rangle}{r^2 \|\mathbf{x}'\|^2 + \sigma^2}$ in the phase of the amplitude of $|\psi_{\langle \mathbf{s}, \mathbf{a} \rangle, \mathbf{y}} \rangle$ follows the Gaussian distribution ρ_β where $\beta := \frac{r \|\mathbf{x}'\|}{2\sigma \sqrt{r^2 \|\mathbf{x}'\|^2 + \sigma^2}}$.

3.3 Where can we find the secret?

2

Observe that the distribution of \mathbf{y}/R contains the information we want. To be more specific, the shape of the support of \mathbf{y}/R can be seen as ellipsoids centered at lattice points of $(qL)^*$, and the

direction and the length of their major axes are related to \mathbf{x}' . It seems plausible that we can utilize \mathbf{y} by extracting information about the secret from the distribution of \mathbf{y}/R .

In fact, the distribution of \mathbf{y}/R , \mathbf{y}'/R and θ all contains information about \mathbf{x}' :

- 1. The width of \mathbf{y}'/R is inversely related to $\|\mathbf{x}'\|$. However \mathbf{y}'/R cannot be obtained directly. (Obtaining \mathbf{y}'/R from \mathbf{y} is an instance of $\mathsf{CVP}_{L^*, \frac{q\sqrt{n}\sqrt{\sigma^2 + \alpha^2 q^2}}{2\sigma r}}$, which is harder than the $\mathsf{CVP}_{L^*, \alpha q/r}$ problem we're aiming to solve.)
- 2. The shape of the support of \mathbf{y}/R is related to the direction of \mathbf{x}' . However these ellipsoids are cut by the boundaries of the cube $[-1/2, 1/2)^n$, leading to a troublesome support of \mathbf{y}/R .
- 3. The width of the distribution of θ is positively related to $\|\mathbf{x}'\|$. However θ cannot be obtained directly either.

4 Bypassing $|LWE\rangle$

The above attempt inspires us to use the distribution of our measurement results to recover useful information. Here we no longer insist on first reducing standard lattice problems to $S|LWE\rangle$. In fact, we only need to give an algorithm that solves CVP using polynomial discrete Gaussian states. Combining the algorithm with step 2 and step 3 of our plan, we can get an iterative algorithm for standard lattice problems.

Given an instance \mathbf{x} of CVP, we begin with discrete Gaussian state

$$\sum_{\mathbf{v}\in L}\rho_{\sqrt{2}r}(\mathbf{v})|\mathbf{v}\rangle$$

Again we measure $\mathbf{a} := L^{-1}\mathbf{v} \mod q$ to get our favorite state

$$\sum_{\mathbf{v} \in qL + L\mathbf{a}} \rho_{\sqrt{2}r}(\mathbf{v}) |\mathbf{v}\rangle$$

We apply a unitary on the state to send $\langle \mathbf{x}, \mathbf{v} \rangle \mod q$ to the phase and obtain

$$\sum_{\mathbf{v}\in qL+L\mathbf{a}} \rho_{\sqrt{2}r}(\mathbf{v}) \cdot e^{\frac{2\pi i \langle \mathbf{x}, \mathbf{v} \rangle}{q}} |\mathbf{v}\rangle \tag{9}$$

Apply QFT_R for $R > r\sqrt{n}$ and we can get

$$|\psi\rangle := \sum_{\mathbf{y}\in\mathbb{Z}_R^n} \sum_{\mathbf{v}\in qL+L\mathbf{a}} \rho_{\sqrt{2}r}(\mathbf{v}) \cdot e^{2\pi i \frac{\langle \mathbf{x}, \mathbf{v} \rangle}{q}} \cdot e^{2\pi i \frac{\langle \mathbf{y}, \mathbf{v} \rangle}{R}} |\mathbf{y}\rangle$$
(10)

From Poisson summation formula,

$$|\psi\rangle = \sum_{\mathbf{y}\in\mathbb{Z}_R^n} \sum_{\mathbf{w}\in(qL)^*} \rho_{\frac{1}{\sqrt{2}r}} \left(\mathbf{w} - \frac{\mathbf{x}'}{q} - \frac{\mathbf{y}}{R}\right) \cdot e^{2\pi i \left(\langle \mathbf{w}, L\mathbf{a} \rangle + \frac{\langle \mathbf{s}, \mathbf{a} \rangle}{q}\right)} |\mathbf{y}\rangle$$
(11)

Then we measure $|\mathbf{y}\rangle$. The resulting vector \mathbf{y}/R , when parsed as a rational vector in $[-1/2, 1/2)^n$, is expected to stay with a radius of $\sqrt{n}/2r$ around $(qL)^* - \frac{\mathbf{x}'}{q}$.

Here is an intuitive idea of estimating \mathbf{x}' . We collect many samples of \mathbf{y}/R and then take the average. We expect the average to be $-\frac{\mathbf{x}'}{a}$, which is enough for solving CVP.

Unfortunately, our intuition is not valid. To be more specific, when r is large, say exponential, then the length of the shift $\frac{\mathbf{x}'}{q}$ is less than $\frac{\alpha q}{r} \cdot \frac{1}{q} = \frac{\alpha}{r}$, which is negligible and can not be detected by efficient algorithms. We can also start from some special lattices such that initially r is small, say polynomial, but then the intersection between the boundary of $[-1/2, 1/2)^n$ and the balls of radius $\sqrt{n}/2r$ around $(qL)^* - \frac{\mathbf{x}'}{q}$ becomes annoying and thus the average of \mathbf{y}/R is not $-\frac{\mathbf{x}'}{q}$.

References

- [Ban93] Wojciech Banaszczyk. New bounds in some transference theorems in the geometry of numbers. *Mathematische Annalen*, 296(1):625–635, 1993.
- [CLZ21] Yilei Chen, Qipeng Liu, and Mark Zhandry. Quantum algorithms for variants of averagecase lattice problems via filtering. Cryptology ePrint Archive, Paper 2021/1093, 2021. https://eprint.iacr.org/2021/1093. 1
- [GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In *STOC*, pages 197–206, 2008. 2
- [Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM, 56(6):34:1–34:40, 2009. 1, 2, 10

A Appendix

A.1 An extension of Banaszczyk's Gaussian tail bounds over lattices

Recall Banaszczyk's Gaussian tail bounds:

Lemma 6 (Lemma 1.5 [Ban93]). For any n-dimensional lattice $L, \mathbf{c} \in \mathbb{R}^n$, and $r \geq \frac{1}{\sqrt{2\pi}}$,

$$\rho((L-\mathbf{c}) \setminus r\sqrt{n}B_2^n) < 2\left(r\sqrt{2\pi e} \cdot e^{-\pi r^2}\right)^n \rho(L).$$

We extend this tail bounds' RHS to an aribitrary shift of the lattice:

Lemma 7. For any n-dimensional lattice L, such that $\lambda_1(L) > 3\sqrt{n}$, and any $\mathbf{y} \in \mathbb{R}^n$ such that $dist(\mathbf{y}, L) < \sqrt{n}$, we have

$$\rho((L-\mathbf{y}) \setminus \frac{\lambda_1(L)}{2} \cdot B_2^n) < 2^{-n} \rho(L-\mathbf{y}).$$
(12)

Proof. First we prove that since $\lambda_1(L) > 3\sqrt{n}$, we have $\rho(L) < 1 + 2^{-n}$. To do so, we apply Lemma 6 with $\mathbf{c} = \mathbf{0}$ and $r\sqrt{n} = \lambda_1(L)/2$, which gives

$$\rho(L \setminus \frac{\lambda_1(L)}{2} \cdot B_2^n) < 2 \left(\frac{\lambda_1(L)}{2\sqrt{n}} \sqrt{2\pi e} \cdot e^{-\pi \left(\frac{\lambda_1(L)}{2\sqrt{n}}\right)^2} \right)^n \cdot \rho(L)$$

$$= 2 \cdot e^{n \ln(\lambda_1(L)/\sqrt{n}) - \pi \lambda_1(L)^2/4 + n \ln \sqrt{\pi e/2}} \cdot \rho(L)$$
(13)

Let $\lambda_1(L) = x \cdot \sqrt{n}$, then consider the function

$$f(x) := \ln(x) - \pi x^2 / 4 + \ln(\sqrt{\pi e/2})$$
(14)

The derivative of f is

$$f'(x) = 1/x - \pi x/2 \tag{15}$$

Therefore when $x > \sqrt{2/\pi}$, f is decreasing. When x > 3, f(x) < -5.24. Hence if $\lambda_1(L) > 3\sqrt{n}$,

$$\rho(L \setminus \frac{\lambda_1(L)}{2} \cdot B_2^n) < 2 \cdot e^{-5.24n} \cdot \rho(L),$$

which means $\rho(L) < 1 + 2^{-n}$

We continue proving Lemma 7 by applying Lemma 6 with $\mathbf{c} = \mathbf{y}$ and $r\sqrt{n} = \lambda_1(L)/2$. This gives

$$\rho((L-\mathbf{y}) \setminus \frac{\lambda_1(L)}{2} \cdot B_2^n) < 2 \left(\frac{\lambda_1(L)\sqrt{\pi e}}{\sqrt{2n}}\right)^n \cdot e^{-\pi\lambda_1(L)^2/4}\rho(L)$$

$$<_{(1)} 3 \left(\frac{\lambda_1(L)\sqrt{\pi e}}{\sqrt{2n}}\right)^n \cdot e^{-\pi\lambda_1(L)^2/4}$$
(16)

where (1) uses $\rho(L) < 1 + 2^{-n}$. Let $\mathbf{y}' = \mathbf{y} - \kappa_L(\mathbf{y})$, then $\|\mathbf{y}'\| = dist(\mathbf{y}, L) < \sqrt{n}$. Then

$$\frac{\rho((L-\mathbf{y}) \setminus \frac{\lambda_1(L)}{2} \cdot B_2^n)}{\rho(\mathbf{y}')} < 3e^{n\ln\left(\frac{\lambda_1(L)\sqrt{\pi e}}{\sqrt{2n}}\right) - \pi\lambda_1(L)^2/4 + \pi \|\mathbf{y}'\|^2}
< 3e^{n\ln(\lambda_1(L)/\sqrt{n}) - \pi\lambda_1(L)^2/4 + n\pi + n\ln\sqrt{\pi e/2}}
< (17)
< (17)
= 3e^{n(\ln 3 - \frac{9}{4}n\pi + n\pi + n\ln\sqrt{\pi e/2})},$$

where (1) is obtained by taking the derivative similar as before: let $\lambda_1(L) = x \cdot \sqrt{n}$, then consider the function

$$g(x) := \ln(x) - \pi x^2 / 4 + \ln(\sqrt{\pi e/2}) + \pi$$
(18)

The derivative of g is

$$g'(x) = 1/x - \pi x/2 \tag{19}$$

Therefore when $x > \sqrt{2/\pi}$, g is decreasing. When x > 3, g(x) < -2.1.

Hence when $\lambda_1(L) > 3\sqrt{n}$ and $\|\mathbf{y}'\| < \sqrt{n}$,

$$\frac{\rho((L-\mathbf{y}) \setminus \frac{\lambda_1(L)}{2} \cdot B_2^n)}{\rho(\mathbf{y}')} < 2^{-2n}.$$

Since $\rho(L - \mathbf{y}) = \rho((L - \mathbf{y}) \setminus \frac{\lambda_1(L)}{2} \cdot B_2^n) + \rho(\mathbf{y'})$, we have

$$\rho((L-\mathbf{y}) \setminus \frac{\lambda_1(L)}{2} \cdot B_2^n) < 2^{-n} \rho(L-\mathbf{y}).$$
⁽²⁰⁾

For technical reasons, we need a variant of Lemma 7:

Lemma 8. For any n-dimensional lattice L and any $\mathbf{y} \in \mathbb{R}^n$, such that $\lambda_1(L) > 3dist(\mathbf{y}, L)/d$ and $\lambda_1(L) > 3\sqrt{n}$, we have

$$\rho((L-\mathbf{y}) \setminus \frac{\lambda_1(L)}{2} \cdot B_2^n) < 2^{-n} \rho_d(L-\mathbf{y}).$$
(21)

Remark: we can treat d as minor axis / major axis, which is less than 1.

Proof. First we prove that since $\lambda_1(L) > 3\sqrt{n}$, we have $\rho(L) < 1 + 2^{-n}$. To do so, we apply Lemma 6 with $\mathbf{c} = \mathbf{0}$ and $r\sqrt{n} = \lambda_1(L)/2$, which gives

$$\rho(L \setminus \frac{\lambda_1(L)}{2} \cdot B_2^n) < 2 \left(\frac{\lambda_1(L)}{2\sqrt{n}} \sqrt{2\pi e} \cdot e^{-\pi \left(\frac{\lambda_1(L)}{2\sqrt{n}}\right)^2} \right)^n \cdot \rho(L)$$

$$= 2 \cdot e^{n \ln(\lambda_1(L)/\sqrt{n}) - \pi \lambda_1(L)^2/4 + n \ln \sqrt{\pi e/2}} \cdot \rho(L)$$
(22)

Let $\lambda_1(L) = x \cdot \sqrt{n}$, then consider the function

$$f(x) := \ln(x) - \pi x^2 / 4 + \ln(\sqrt{\pi e/2})$$
(23)

The derivative of f is

$$f'(x) = 1/x - \pi x/2 \tag{24}$$

Therefore when $x > \sqrt{2/\pi}$, f is decreasing. When x > 3, f(x) < -5.24. Hence if $\lambda_1(L) > 3\sqrt{n}$,

$$\rho(L \setminus \frac{\lambda_1(L)}{2} \cdot B_2^n) < 2 \cdot e^{-5.24n} \cdot \rho(L),$$

which means $\rho(L) < 1+2^{-n}$

We continue proving Lemma 8 by applying Lemma 6 with $\mathbf{c} = \mathbf{y}$ and $r\sqrt{n} = \lambda_1(L)/2$. This gives

$$\rho((L-\mathbf{y}) \setminus \frac{\lambda_1(L)}{2} \cdot B_2^n) < 2 \left(\frac{\lambda_1(L)\sqrt{\pi e}}{\sqrt{2n}}\right)^n \cdot e^{-\pi\lambda_1(L)^2/4}\rho(L)$$

$$<_{(1)} 3 \left(\frac{\lambda_1(L)\sqrt{\pi e}}{\sqrt{2n}}\right)^n \cdot e^{-\pi\lambda_1(L)^2/4}$$
(25)

where (1) uses $\rho(L) < 1 + 2^{-n}$. Let $\mathbf{y}' = \mathbf{y} - \kappa_L(\mathbf{y})$, then $\|\mathbf{y}'\|/d = dist(\mathbf{y}, L)/d < \lambda_1(L)/3$. Then $\frac{\rho((L - \mathbf{y}) \setminus \frac{\lambda_1(L)}{2} \cdot B_2^n)}{\rho_d(\mathbf{y}')} < 3e^{n\ln\left(\frac{\lambda_1(L)\sqrt{\pi e}}{\sqrt{2n}}\right) - \pi\lambda_1(L)^2/4 + \pi\|\mathbf{y}'\|^2/d^2}$ $< 3e^{n\ln(\lambda_1(L)/\sqrt{n}) - \pi\lambda_1(L)^2/4 + \pi\lambda_1(L)^2/9 + n\ln\sqrt{\pi e/2}}$ $< (1) 3e^{n\ln(3) - \frac{9}{4}n\pi + n\pi + n\ln\sqrt{\pi e/2}}$ $= 3e^{n(\ln 3 - \frac{5}{4}\pi + \ln\sqrt{\pi e/2})},$ (26)

where (1) is obtained by taking the derivative similar as before: let $\lambda_1(L) = x \cdot \sqrt{n}$, then consider the function

$$g(x) := \ln(x) - 5\pi x^2/36 + \ln(\sqrt{\pi e/2})$$
(27)

The derivative of g is

$$g'(x) = 1/x - 5\pi x/18 \tag{28}$$

Therefore when $x > \sqrt{\frac{18}{5\pi}}$, g is decreasing. When x > 3, g(x) < -2.1. Hence when $\lambda_1(L) > 3dist(\mathbf{y}, L)/d$ and $\lambda_1(L) > 3\sqrt{n}$,

$$\frac{\rho((L-\mathbf{y})\setminus\frac{\lambda_1(L)}{2}\cdot B_2^n)}{\rho_d(\mathbf{y}')} < 2^{-2n}.$$

Since $\rho_d(L - \mathbf{y}) = \rho_d((L - \mathbf{y}) \setminus \frac{\lambda_1(L)}{2} \cdot B_2^n) + \rho_d(\mathbf{y}')$, we have

$$\rho((L-\mathbf{y}) \setminus \frac{\lambda_1(L)}{2} \cdot B_2^n) < 2^{-n} \rho_d(L-\mathbf{y}).$$
⁽²⁹⁾

Corollary 9. For any n-dimensional lattice L, any $y \in \mathbb{R}^n$ and any symmetric and positive matrix Σ whose smallest singular value is a^2 and whose largest singular value is b^2 , such that $\lambda_1(L) > \frac{3b}{a} dist(\mathbf{y}, L)$ and $\lambda_1(L) > 3\sqrt{n}/a$, we have

$$\rho_{\Sigma^{-1}}((L-\mathbf{y}) \setminus \frac{\lambda_1(L)}{2} \cdot B_2^n) \le \rho_{\frac{1}{a}}((L-\mathbf{y}) \setminus \frac{\lambda_1(L)}{2} \cdot B_2^n) < 2^{-n}\rho_{\frac{1}{b}}(L-\mathbf{y}) \le 2^{-n}\rho_{\Sigma^{-1}}(L-\mathbf{y}).$$
(30)

A.2 Smoothing of Gaussian with a phase

We generalize [Reg09, Claim 3.9] to handle Gaussian function with a phase.

Theorem 10. Let *L* be a lattice, $\mathbf{u} \in \mathbb{R}^n$ be any vector, r, s > 0 be any real numbers, $t := \sqrt{r^2 + s^2}$. Consider the function *Y* on $\mathbf{x} \in \mathbb{R}^n$ as the convolution of

1. **y** with support $L + \mathbf{u}$ and amplitude $h(\mathbf{y}) := \rho_r(\mathbf{y}) \cdot e^{2\pi i \cdot \langle \mathbf{y}, \mathbf{z} \rangle}$ for some fixed $\mathbf{z} \in \mathbb{R}^n$ such that $d(\mathbf{z}, L^*) < \frac{t}{rs}\sqrt{n}$;

2. A noise vector taken from ρ_s .

Suppose $\frac{rs}{t}\lambda_1(L^*) > 3\sqrt{n}$. Then $Y(\mathbf{x}) \approx \rho_t(\mathbf{x}) \cdot e^{2\pi i \cdot (r/t)^2 \langle \mathbf{z} - \kappa_{L^*}(\mathbf{z}), \mathbf{x} \rangle}$.

Proof. The function Y can be written as

$$Y(\mathbf{x}) = \sum_{\mathbf{y}\in L+\mathbf{u}} h(\mathbf{y})\rho_s(\mathbf{x}-\mathbf{y})$$

$$= \sum_{\mathbf{y}\in L+\mathbf{u}} \exp\left(-\pi\left(\frac{\|\mathbf{y}\|^2}{r^2} + \frac{\|\mathbf{x}-\mathbf{y}\|^2}{s^2}\right)\right) \cdot e^{2\pi i \cdot \langle \mathbf{y}, \mathbf{z} \rangle}$$

$$= \exp\left(-\frac{\pi}{r^2 + s^2} \|\mathbf{x}\|^2\right) \sum_{\mathbf{y}\in L+\mathbf{u}} \exp\left(-\pi\left(\frac{t}{rs}\right)^2 \cdot \|\mathbf{y} - \frac{r^2}{t^2}\mathbf{x}\|^2\right) \cdot e^{2\pi i \cdot \langle \mathbf{y}, \mathbf{z} \rangle}$$

$$= \rho_t(\mathbf{x}) \cdot \sum_{\mathbf{y}\in L+\mathbf{u}} \exp\left(-\pi\left(\frac{t}{rs}\right)^2 \cdot \|\mathbf{y} - \frac{r^2}{t^2}\mathbf{x}\|^2\right) \cdot e^{2\pi i \cdot \langle \mathbf{y}, \mathbf{z} \rangle}$$
(31)

For any $\mathbf{y} \in \mathbb{R}^n$, let $g(\mathbf{y}) := \rho_{\frac{rs}{t}}(\mathbf{y}) \cdot e^{2\pi i \cdot \langle \mathbf{y}, \mathbf{z} \rangle}$. Then

$$\hat{g}(\mathbf{w}) = \rho_{\frac{t}{rs}}(\mathbf{w} - \mathbf{z})$$

Then

$$\sum_{\mathbf{y}\in L+\mathbf{u}} \exp\left(-\pi \left(\frac{t}{rs}\right)^{2} \cdot \|\mathbf{y} - \frac{r^{2}}{t^{2}}\mathbf{x}\|^{2}\right) \cdot e^{2\pi i \cdot \langle \mathbf{y}, \mathbf{z} \rangle}$$

$$= \sum_{\mathbf{y}\in L} \rho_{\frac{rs}{t}} \left(\mathbf{y} + \mathbf{u} - \frac{r^{2}}{t^{2}}\mathbf{x}\right) \cdot e^{2\pi i \cdot \langle \mathbf{y} + \mathbf{u}, \mathbf{z} \rangle}$$

$$= \sum_{\mathbf{y}\in L} g(\mathbf{y} + \mathbf{u} - \frac{r^{2}}{t^{2}}\mathbf{x}) \cdot e^{2\pi i \cdot \langle \frac{r^{2}}{t^{2}}\mathbf{x}, \mathbf{z} \rangle}$$

$$=_{(1)} \sum_{\mathbf{w}\in L^{*}} \hat{g}(\mathbf{w}) \cdot e^{2\pi i \cdot \langle \mathbf{u} - (r/t)^{2}\mathbf{x}, \mathbf{w} \rangle} \cdot e^{2\pi i \cdot \langle \frac{r^{2}}{t^{2}}\mathbf{x}, \mathbf{z} \rangle}$$

$$= \sum_{\mathbf{w}\in L^{*}} \rho_{t/rs}(\mathbf{w} - \mathbf{z}) \cdot e^{2\pi i \cdot (\langle \mathbf{u}, \mathbf{w} \rangle - \langle (r/t)^{2}\mathbf{x}, \mathbf{w} - \mathbf{z} \rangle)}$$
(32)

where (1) uses Poisson Summation Formula (ignoring the normalization factor $(rs/t)^n \det(L^*)$). Applying Lemma 7 with the lattice L being $\frac{rs}{t}L^*$ here, which is $\frac{rs}{t}(qL)^*$ in the main theorem; the vector \mathbf{y} being $\frac{rs}{t} \cdot \mathbf{z}$, which is $\frac{rs}{t} \cdot \frac{\mathbf{y}}{R}$ in the main theorem; $\lambda_1(L)$ being $\frac{rs}{t}\lambda_1(L^*)$ here, which is $\frac{rs}{tq}\lambda_1(L^*)$ in the main theorem.

Recall that $s \|\mathbf{x}'\| = \sigma$ and $t = \sqrt{r^2 + s^2}$. $dist(\mathbf{y}, L)$ in Lemma 7 satisfies

$$dist(\mathbf{y}, L) < \sqrt{n} \cdot \frac{\sqrt{\sigma^2 + r^2 \|\mathbf{x}'\|^2}}{\sigma r} \cdot \frac{rs}{t} = \sqrt{n} \cdot \frac{\sqrt{(s\|\mathbf{x}'\|)^2 + r^2 \|\mathbf{x}'\|^2}}{s\|\mathbf{x}'\|r} \cdot \frac{rs}{\sqrt{r^2 + s^2}} = \sqrt{n}$$

Back to Eqn. (32), when $\frac{rs}{t} > \frac{3\sqrt{n}}{\lambda_1(L^*)}$ and $\|\mathbf{z}'\| < \frac{t\sqrt{n}}{rs}$ with $\mathbf{z}' := \mathbf{z} - \kappa_{L^*}(\mathbf{z})$, we have

$$\sum_{\mathbf{w}\in L^*} \rho_{t/rs}(\mathbf{w}-\mathbf{z}) \cdot e^{2\pi i \cdot \left(\langle \mathbf{u}, \mathbf{w} \rangle - \langle (r/t)^2 \mathbf{x}, \mathbf{w}-\mathbf{z} \rangle\right)} \approx \rho_{t/rs}(\mathbf{z}') \cdot e^{2\pi i \cdot \left(\langle \mathbf{u}, \kappa_{L^*}(\mathbf{z}) \rangle + \langle (r/t)^2 \mathbf{x}, \mathbf{z}' \rangle\right)}$$
(33)

Then $Y(\mathbf{x}) \propto \rho_t(\mathbf{x}) \cdot e^{2\pi i \cdot (r/t)^2 \langle \mathbf{z} - \kappa_L * (\mathbf{z}), \mathbf{x} \rangle}$.

A.3 Linear combination of continuous Gaussian with a phase

Theorem 11. For any $\mathbf{x} \in \mathbb{R}^n$ such that $\|\mathbf{x}\| > 0$. Suppose the amplitude of $\mathbf{v} \in \mathbb{R}^n$ is $f(\mathbf{v}) = \rho_r(\mathbf{v}) \cdot e^{2\pi i (\langle \mathbf{v}, \mathbf{y} \rangle + w)}$ for some fixed $\mathbf{y} \in \mathbb{R}^n$ and $w \in \mathbb{R}$, then the amplitude of $u := \langle \mathbf{x}, \mathbf{v} \rangle$ is

$$g(u) = \lambda \cdot \rho_{\|\mathbf{x}\| \cdot r}(u) \cdot e^{2\pi i \cdot u \cdot \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\|^2}}.$$
(34)

where λ is some fixed complex number.

Proof. Let $\mathbf{v}' \in \mathbb{R}^n$ be any real vector such that $\langle \mathbf{v}', \mathbf{y} \rangle = w$. Then the amplitude of $\mathbf{v} \in \mathbb{R}^n$ can be written as

$$f(\mathbf{v}) = \rho_r(\mathbf{v}) \cdot e^{2\pi i \langle \mathbf{v} + \mathbf{v}', \mathbf{y} \rangle}$$
(35)

For $j \in [n]$, let g_j denote the amplitude of $u_j := x_j \cdot v_j$. Then, when $x_j = 0$, $g_j = \delta_0 \cdot e^{2\pi i \cdot v'_j \cdot y_j}$, where δ denotes the indicator function; when $x_j \neq 0$,

$$g_j(u_j) = \rho_{x_j \cdot r}(u_j) \cdot e^{2\pi i \cdot (u_j \cdot y_j/x_j) + v'_j \cdot y_j}$$
(36)

Then the Fourier transform of g_j is

$$\hat{g}_{j}(z) = \begin{cases} e^{2\pi i \cdot v'_{j} \cdot y_{j}} & \text{when } x_{j} = 0; \\ e^{-\pi r^{2} (x_{i} \cdot z - y_{i})^{2}} \cdot e^{2\pi i \cdot v'_{j} \cdot y_{j}} & \text{when } x_{j} \neq 0; \end{cases}$$
(37)

So the product of $\hat{g}_1, ..., \hat{g}_n$ is

$$\hat{g}(z) := \prod_{j=1}^{n} \hat{g}_{j}(z) = e^{-\pi r^{2}(\|\mathbf{x}\|^{2} \cdot z^{2} - 2\langle \mathbf{x}, \mathbf{y} \rangle \cdot z + \delta)} \cdot e^{2\pi i \cdot w} = e^{-\pi r^{2} \|\mathbf{x}\|^{2} \cdot (z - \theta)^{2} + \delta'} \cdot e^{2\pi i \cdot w}$$
(38)

where δ and δ' are some real numbers that does not depend on \mathbf{x} , $\theta = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\|^2}$ is a real number that depends on \mathbf{x} .

Then the amplitude of $u := \langle \mathbf{x}, \mathbf{v} \rangle \in \mathbb{R}$ is the convolution of g_j , which is the Fourier transform of \hat{g} . So the amplitude of u is

$$g(u) = \hat{\hat{g}}(u) = \lambda \cdot \rho_{\parallel \mathbf{x} \parallel \cdot r}(u) \cdot e^{2\pi i \cdot u \cdot \theta}.$$
(39)

where λ is some fixed complex number.