Attempts to Quantumly Solve Standard Lattice Problems: Reduction from Standard Lattice Problems to S|LWE \rangle and Beyond

Zihan Hu, Yaxin Tu
(Authors of this note)
Yilei Chen
Qipeng Liu
(Dear advisor)
(Dear collaborator)

December 21, 2022

Contents

1 Introduction 1
2 Quantum reduction from Standard Lattice Problems to S|LWE \rangle 1
2.1 Summary of Regev's reduction [Reg09] 1
2.2 Modifying Regev's reduction 2
3 Extracting secrets from |LWE \rangle state 4
3.1 Measuring the overlap of $\left|\psi_{\langle\mathbf{s}, \mathbf{a}, \mathbf{y}}\right\rangle$ and uniform to approximate $\left\|\mathbf{x}^{\prime}\right\|$ 4
3.2 The distribution of \mathbf{y} 4
3.3 Where can we find the secret? 5
4 Bypassing |LWE〉 6
A Appendix 7
A. 1 An extension of Banaszczyk's Gaussian tail bounds over lattices 7
A. 2 Smoothing of Gaussian with a phase 10
A. 3 Linear combination of continuous Gaussian with a phase 12

1 Introduction

In this note, we summarize our partial results on quantumly solving standard lattice problems.
Solving standard lattice problems has been a target for designing efficient quantum algorithms for decades. Regev [Reg09] shows given a polynomial time algorithm that solves $\mathrm{LWE}_{n, m, q, \mathcal{D}_{\text {noise }}}$ where $\mathcal{D}_{\text {noise }}$ is Gaussian and m can be any polynomial, one can construct a quantum algorithm that solves standard lattice problems.
Here let us consider the following quantum variant of the LWE problem called solving LWE given LWE-like states (S|LWE).

Definition 1 (Solving LWE given LWE-like quantum states (S|LWE)). Let n, m, q be positive integers. Let f be a function from \mathbb{Z}_{q} to \mathbb{R}. Let $u \in \mathbb{Z}_{q}^{n}$ be a secret vector. The problem of solving LWE given LWE-like states $\mathrm{S}|\mathrm{LWE}\rangle_{n, m, q, f}$ asks to find u given access to an oracle that outputs a_{i}, $\sum_{e_{i} \in \mathbb{Z}_{q}} f\left(e_{i}\right)\left|a_{i} \cdot u+e_{i}(\bmod q)\right\rangle$ on its $i^{\text {th }}$ query, for $i=1, \ldots, m$. Here each a_{i} is a uniformly random vector in \mathbb{Z}_{q}^{n}.
$S|\mathrm{LWE}\rangle_{n, m, q, \sqrt{D_{\text {noise }}}}$ is easier to solve than $\mathrm{LWE}_{n, m, q, D_{\text {noise }}}$, because we can get (classical) LWE samples by measuring $|\mathrm{LWE}\rangle$ in computational basis. Recent work [CLZ21] shows when the noise amplitude f is of a special kind, we can solve $\mathrm{S}|\mathrm{LWE}\rangle$ in quantum polynomial time.

Theorem 2 ([CLZ21]). When the noise distribution f is chosen such that \hat{f} is non-negligible over \mathbb{Z}_{q}, then we can solve $\mathrm{S}|\mathrm{LWE}\rangle_{n, m, q, f}$ in quantum polynomial time.

Given the 'feasibility' of solving S|LWE \rangle, one plausible roadmap towards solving standard lattice problems is first to modify Regev's reduction (from standard lattice problems to LWE) to a reduction from standard lattice problems to $\mathrm{S}|\mathrm{LWE}\rangle$, and then solve the $\mathrm{S}|\mathrm{LWE}\rangle$ problem. The key point is that the noise amplitude f in $\mathrm{S}|\mathrm{LWE}\rangle$ should on one hand be 'strong' enough so that the $\mathrm{S}|\mathrm{LWE}\rangle$ oracle can solve standard lattice problems, but on the other hand be 'weak' enough so that the $\mathrm{S}|\mathrm{LWE}\rangle$ problem is solvable by polynomial quantum algorithms.

2 Quantum reduction from Standard Lattice Problems to S|LWE \rangle

In this section, we'll show how to obtain a quantum reduction from standard lattice problems to $\mathrm{S}|\mathrm{LWE}\rangle$, by modifying Regev's reduction.

2.1 Summary of Regev's reduction [Reg09]

Let's start by recalling the details of Regev's reduction. Many standard lattice problems can be reduced to sampling from the discrete Gaussian distribution $\left(D_{L, r}\right)$ of a nontrivial width r over the lattice L. With the help of an LWE solver, one can construct a procedure sampling from $D_{L, r}$ given samples from $D_{L, r \cdot c}$ with $c>1$, and hence can start with samples from extremely wide $D_{L, R}$ (which can be obtained through, say, LLL-algorithm) and end up with samples from $D_{L, r}$ with a nontrivial (say, polynomial) width r. The precise procedure contains two subroutines:

Step 1 (Classical, uses LWE) Given an instance of $\mathrm{CVP}_{L^{*}, \alpha q /(\sqrt{2} r)}$, using poly (n) samples from $D_{L, r}$ to create LWE samples with Gaussian noise with width $\leq \alpha q$, and then solve it with an LWE solver which in turn solves the $\mathrm{CVP}_{L^{*}, \alpha q /(\sqrt{2} r)}$ problem:
Theorem 3 ([Reg09]). Suppose $m \in \operatorname{poly}(n)$, q be an integer, $\alpha \in(0,1)$ be a real number and $r>\sqrt{2} q \eta_{\epsilon}(L)$ satisfying some smoothing condition with $\epsilon \in \operatorname{negl}(n)$. There exists an efficient (classical) algorithm that, given an oracle that solves $\operatorname{LWE}_{n, m, q, q \Psi_{\alpha}}$ and poly (n, m) samples from $D_{L, r}$, solves $\mathrm{CVP}_{L^{*}, \alpha q /(\sqrt{2} r)}$, where Ψ_{α} denotes the periodic Gaussian distribution and $q \Psi_{\alpha}$ stands for scaling it by q.

Step 2 (Quantum) Using a CVP ${ }_{L^{*}, \alpha q /(\sqrt{2} r)}$ solver to generate poly (n) discrete Gaussian states $\left|D_{L, r \cdot \sqrt{n} /(\alpha q)}\right\rangle=$ $\sum_{\mathbf{v} \in L} \sqrt{\rho_{r \cdot \sqrt{n} /(\alpha q)}(\mathbf{v})}|\mathbf{v}\rangle$ and measure them to get poly (n) classical samples from $D_{L, r \sqrt{n} / \alpha q}$:
Theorem 4 ([Reg09]). There exists an efficient quantum algorithm that, given any n-dimensional lattice L, a number $d<\lambda_{1}\left(L^{*}\right) / 2$, and an oracle that solves $\operatorname{CVP}_{L^{*}, d}$, outputs $\left|D_{L, \sqrt{n} /(\sqrt{2} d)}\right\rangle$.

These two subroutines allow us to transform the distribution $D_{L, r}$ to a narrower distribution $D_{L, r \cdot \sqrt{n} /(\alpha q)}$, and hence solve the discrete Gaussian sampling problem whenever $\alpha q / \sqrt{n}>1$.

2.2 Modifying Regev's reduction

Notice that the quantum part of the iterative algorithm actually produces discrete Gaussian states instead of just classical samples. This gives us hope to construct a procedure sampling $\left|D_{L, r}\right\rangle$ states, given $\left|D_{L, r \cdot c\rangle}\right\rangle(c>1)$ states and an $\mathrm{S}|\mathrm{LWE}\rangle$ solver. The procedure is as follows:

Step 1 (Uses $\mathrm{S}|\mathrm{LWE}\rangle$) Given an instance of $\mathrm{CVP}_{L^{*}, \alpha q / r}$, using poly (n) discrete Gaussian states $\left|D_{L, r}\right\rangle$ to create an $\mathrm{S}|\mathrm{LWE}\rangle_{n, m, q, f}$ instance with certain f, and then solve it with an $\mathrm{S}|\mathrm{LWE}\rangle_{n, m, q, f}$ solver which in turn solves the $\mathrm{CVP}_{L^{*}, \alpha q / r}$ problem;

Step 2 (Same as the quantum step in Regev's reduction) Using a $\operatorname{CVP}_{L^{*}, \alpha q /(\sqrt{2} r)}$ solver to generate $\operatorname{poly}(n)$ discrete Gaussian states $\left|D_{L, r \cdot \sqrt{n} /(\alpha q)}\right\rangle=\sum_{\mathbf{v} \in L} \sqrt{\rho_{r \cdot \sqrt{n} /(\alpha q)}(\mathbf{v})}|\mathbf{v}\rangle ;$

Step 3 (Additional) Create arbitrarily polynomially many quantum states $\left|D_{L, r^{\prime}}\right\rangle$ from poly $(n)\left|D_{L, r \cdot \sqrt{n} /(\alpha q)}\right\rangle$ states, where $r \sqrt{n} / \alpha q<r^{\prime}<r$.

Step 3 appears in case the $\mathrm{S}|\mathrm{LWE}\rangle$ solver in step 1 needs to consume $\left|D_{L, r}\right\rangle$ states. Step 3 can be done in multiple ways, e.g., slightly modifying the GPV discrete Gaussian sampler [GPV08] to sample $\left|D_{L, r^{\prime}}\right\rangle$ states with $r^{\prime}=r \cdot(n \omega(\sqrt{\log n})) /(\alpha q)$. In this case we should demand $\alpha q>n \omega(\sqrt{\log n})$.
We are left with step 1 to close the reduction. In the sequel, we focus on doing step 1 and see the $\mathrm{S}|\mathrm{LWE}\rangle$ oracle we require.
Let \mathbf{x} denote a $\mathrm{CVP}_{L^{*}, \alpha q / r}$ instance. Write $\mathbf{x}=\kappa_{L^{*}}(\mathbf{x})+\mathbf{x}^{\prime}$, where $\kappa_{L^{*}}(\mathbf{x})$ is the closest L^{*} vector to \mathbf{x}, then it is guaranteed that $\left\|\mathbf{x}^{\prime}\right\| \leq \alpha q / r$.
According to Regev's reduction, $\langle\mathbf{x}, \mathbf{v}\rangle+e(\bmod p)=\left\langle\kappa_{L^{*}}(\mathbf{x}), \mathbf{v}\right\rangle+\left(\left\langle\mathbf{x}^{\prime}, \mathbf{v}\right\rangle+e\right)(\bmod p)$ is an LWE instance where \mathbf{v} is a $D_{L, r}$ sample, and e is sampled from Gaussian distribution to "smooth" the discrete Gaussian $\left\langle\mathbf{x}^{\prime}, \mathbf{v}\right\rangle$.

Here we follow the same idea to prepare |LWE \rangle state through the following steps, using the discrete Gaussian state to replace the discrete Gaussian distribution over the lattice and a pure state with Gaussian amplitudes to replace the Gaussian error. For simplicity, let's ignore the normalization factors.

1. Prepare the initial state

$$
\sum_{\mathbf{v} \in L} \rho_{r \sqrt{2}}(\mathbf{v})|\mathbf{v}\rangle \otimes \sum_{e \in \mathbb{R}} \rho_{\sqrt{2} \sigma}(e)|e \bmod q\rangle
$$

($\sum_{e \in \mathbb{R}}$ is not well-defined, we will build a state with enough precision to replace it.)
2. Measure $L^{-1} \mathbf{v} \bmod q$ to get an outcome \mathbf{a} and a result state

$$
\sum_{\mathbf{v} \in q L+L \mathbf{a}} \rho_{r \sqrt{2}}(\mathbf{v})|\mathbf{v}\rangle \otimes \sum_{e \in \mathbb{R}} \rho_{\sqrt{2} \sigma}(e)|e \bmod q\rangle
$$

3. Apply a unitary to add the inner product $\langle\mathbf{x}, \mathbf{v}\rangle \bmod q$ to the second register we get

$$
\begin{equation*}
\sum_{\mathbf{v} \in q L+L \mathbf{a}} \rho_{r \sqrt{2}}(\mathbf{v})|\mathbf{v}\rangle \otimes \sum_{e \in \mathbb{R}} \rho_{\sqrt{2} \sigma}(e)\left|\langle\mathbf{s}, \mathbf{a}\rangle+\left\langle\mathbf{x}^{\prime}, \mathbf{v}\right\rangle+e \bmod q\right\rangle \tag{1}
\end{equation*}
$$

where $L^{*} \mathbf{s}=\kappa_{L^{*}}(\mathbf{x})(\bmod p)$.
4. Apply QFT_{R} to the first register where $R>r \sqrt{n}$ is an integer:

$$
\begin{equation*}
\sum_{\mathbf{y} \in \mathbb{Z}_{R}^{n}} \sum_{\mathbf{v} \in q L+L \mathbf{a}} \rho_{r \sqrt{2}}(\mathbf{v}) \cdot \omega_{R}^{\langle\mathbf{v}, \mathbf{y}\rangle}|\mathbf{y}\rangle \otimes \sum_{e \in \mathbb{R}} \rho_{\sqrt{2} \sigma}(e)\left|\langle\mathbf{s}, \mathbf{a}\rangle+\left\langle\mathbf{x}^{\prime}, \mathbf{v}\right\rangle+e \bmod q\right\rangle, \tag{2}
\end{equation*}
$$

5. Measure the first register to get an outcome \mathbf{y} and a result state

$$
\begin{equation*}
\sum_{\mathbf{v} \in q L+L \mathbf{a}} \sum_{e \in \mathbb{R}} \rho_{r \sqrt{2}}(\mathbf{v}) \rho_{\sqrt{2} \sigma}(e) \cdot \omega_{R}^{\langle\mathbf{v}, \mathbf{y}\rangle}\left|\langle\mathbf{s}, \mathbf{a}\rangle+\left\langle\mathbf{x}^{\prime}, \mathbf{v}\right\rangle+e \bmod q\right\rangle . \tag{3}
\end{equation*}
$$

According to Theorem 11, this state is close to:

$$
\begin{equation*}
\left|\psi_{\langle\mathbf{s}, \mathbf{a}\rangle, \mathbf{y}}\right\rangle:=\sum_{u^{\prime} \in \mathbb{R}} \rho_{\sqrt{2} \sqrt{r^{2}\left\|\mathbf{x}^{\prime}\right\|^{2}+\sigma^{2}}}\left(u^{\prime}\right) \cdot e^{2 \pi i \cdot u^{\prime} \cdot \theta}\left|\langle\mathbf{s}, \mathbf{a}\rangle+u^{\prime} \bmod q\right\rangle, \tag{4}
\end{equation*}
$$

an LWE-like state whose error distribution is Gaussian distribution with a phase, where $\theta:=$ $\frac{r^{2}\left\langle\mathbf{x}^{\prime}, \mathbf{y}^{\prime} / R\right\rangle}{r^{2}\left\|\mathbf{x}^{\prime}\right\|^{2}+\sigma^{2}}, \mathbf{y}^{\prime} / R:=\mathbf{y} / R-\kappa_{(q L)^{*}}(\mathbf{y} / R)$.

Hence, if one can solve \mathbf{s} from $\left|\psi_{\langle\mathbf{s}, \mathbf{a}\rangle, \mathbf{y}}\right\rangle$, an \mid LWE \rangle with error distribution being Gaussian distribution with a phase, then one can solve the $\operatorname{CVP}_{L^{*}, \alpha q / r}$ problem.
One caveat is this $\mathrm{S}|\mathrm{LWE}\rangle_{n, m, q, f}$ problem has its amplitude function $f(u)=\rho_{\sqrt{2} \sqrt{r^{2}\left\|\mathbf{x}^{\prime}\right\| \|^{2}+\sigma^{2}}}(u)$. $e^{2 \pi i \cdot u \cdot \theta}$ which depends on \mathbf{x}^{\prime} and known \mathbf{y}.
To eventually solve the CVP problem for \mathbf{x}, it suffices to extract either the center $\langle\mathbf{s}, \mathbf{a}\rangle$, or $\left\|\mathbf{x}^{\prime}\right\|$, or the direction of \mathbf{x}^{\prime} from the state 4 . In the following sections, we will describe our attempts and partial results.

Remark 5. If there is no phase (i.e. $\mathbf{y}=\mathbf{0}$), this state can be written as

$$
\begin{equation*}
\sum_{e^{\prime} \in \mathbb{R}} \rho_{\sqrt{2} \sqrt{r^{2}\left\|\mathbf{x}^{\prime}\right\|^{2}+\sigma^{2}}}\left(e^{\prime}\right)\left|\langle\mathbf{s}, \mathbf{a}\rangle+e^{\prime} \bmod q\right\rangle, \tag{5}
\end{equation*}
$$

an |LWE \rangle with Gaussian error distribution. It is the phase that makes our $|\mathrm{LWE}\rangle$ nonstandard.

3 Extracting secrets from |LWE〉 state

From now on our targets become extracting either the center $\langle\mathbf{s}, \mathbf{a}\rangle$ or $\left\|\mathbf{x}^{\prime}\right\|$ or the direction of \mathbf{x}^{\prime} from the state $\left|\psi_{\langle\mathbf{s}, \mathbf{a}\rangle, \mathbf{y}}\right\rangle:=\sum_{u^{\prime} \in \mathbb{R}} \rho_{\sqrt{2} \sqrt{r^{2}\left\|\mathbf{x}^{\prime}\right\|^{2}+\sigma^{2}}}\left(u^{\prime}\right) \cdot e^{2 \pi i \cdot u^{\prime} \cdot \theta}\left|\langle\mathbf{s}, \mathbf{a}\rangle+u^{\prime} \bmod q\right\rangle$ with measurement results a and \mathbf{y}, where $\theta:=\frac{r^{2}\left\langle\mathbf{x}^{\prime}, \mathbf{y}^{\prime} / R\right\rangle}{r^{2}\left\|\mathbf{x}^{\prime}\right\|^{2}+\sigma^{2}}, \mathbf{y}^{\prime} / R:=\mathbf{y} / R-\kappa_{(q L)}(\mathbf{y} / R)$. If this is done then using the reduction in Section 2.2 we can solve standard lattice problems via quantum algorithm.

3.1 Measuring the overlap of $\left|\psi_{\langle\mathbf{s}, \mathbf{a}\rangle, \mathbf{y}}\right\rangle$ and uniform to approximate $\left\|\mathrm{x}^{\prime}\right\|$

Start with the case where $\mathbf{y}=\mathbf{0}$ and no phase is involved, then our state $\left|\psi_{\langle\mathbf{s}, \mathbf{a}\rangle, \mathbf{0}}\right\rangle$ is displayed in Equation (5). An important observation is that when $\left\|\mathbf{x}^{\prime}\right\|$ is small, the mass of $\left|\psi_{\langle\mathbf{s}, \mathbf{a}\rangle, \mathbf{0}}\right\rangle$ is in a small range, while when $\left\|\mathbf{x}^{\prime}\right\|$ is large, $\left|\psi_{\langle\mathbf{s}, \mathbf{a}\rangle, \mathbf{0}}\right\rangle$ seems close to the uniform superposition $|\nu\rangle:=\sum_{z \in \mathbb{Z}_{q}}|z\rangle$. Hence measuring the overlap between $\left|\psi_{\langle\mathbf{s}, \mathbf{a}\rangle, \mathbf{0}}\right\rangle$ and $|\nu\rangle$ reveals whether $\left\|\mathbf{x}^{\prime}\right\|$ is small or large, which allows us to estimate $\left\|\mathbf{x}^{\prime}\right\|$ within some precision.
Since the probability of getting $\mathbf{y}=\mathbf{0}$ is negligible ${ }^{1}$, we need to take the phase into consideration. However, the distribution of θ in the phase is "neutralizing" the above effect: the expectation of $\left|\left\langle\psi_{\langle\mathbf{s}, \mathbf{a}\rangle, \mathbf{y}} \mid \nu\right\rangle\right|^{2}$ is independent of $\left\|x^{\prime}\right\|$.
This is not surprising since this overlap measurement does not use the measurement result \mathbf{y}, then measuring the second register should give the same result as measuring the second register of Equation (1), which is equivalent to measuring the overlap between the uniform superposition and a mixture of $\left\{\sum_{e \in \mathbb{R}} \rho_{\sqrt{2} \sigma}(e)|\langle\mathbf{x}, \mathbf{v}\rangle+e \bmod q\rangle\right\}_{\mathbf{v} \in q L+L \mathbf{a}}$, which is a constant depending on σ and q.
According to the above arguments, we need to find a way to utilize the information in the measurement result \mathbf{y} in order to extract information of \mathbf{x}^{\prime}. To better utilize \mathbf{y}, let's first figure out the distribution of $\mathbf{y}, \mathbf{y}^{\prime} / R$ and θ in our favourite state $\left|\psi_{\langle\mathbf{s}, \mathbf{a}\rangle, \mathbf{y}}\right\rangle$.

3.2 The distribution of y

Now we give a more detailed analysis of the distribution of \mathbf{y} obtained by measuring the register $|\mathbf{y}\rangle$ in (Equation (2)):

$$
\sum_{\mathbf{y} \in \mathbb{Z}_{R}^{n}} \sum_{\mathbf{v} \in q L+L \mathbf{a}} \rho_{\sqrt{2} r}(\mathbf{v}) \cdot \omega_{R}^{\langle\mathbf{v}, \mathbf{y}\rangle}|\mathbf{y}\rangle \otimes \sum_{e \in \mathbb{R}} \rho_{\sqrt{2} \sigma}(e)|\langle\mathbf{x}, \mathbf{v}\rangle+e \bmod q\rangle
$$

Computing the reduced density matrix of the first register, we have the probability of measuring $\mathbf{y} \in \mathbb{Z}_{R}^{n}$ approximately proportional to

[^0]\[

$$
\begin{align*}
& \sum_{t \in\left[-\frac{q}{2}, \frac{q}{2}\right)}\left|\sum_{\mathbf{v} \in q L+L \mathbf{a}} \rho_{\sqrt{2} r}(\mathbf{v}) \rho_{\sqrt{2} \sigma}(t-\langle\mathbf{x}, \mathbf{v}\rangle \bmod q) \cdot e^{2 \pi i \cdot\left\langle\mathbf{v}, \frac{\mathbf{y}}{R}\right\rangle}\right|^{2} \\
\approx & \sum_{t^{\prime} \in\left[-\frac{q}{2}, \frac{q}{2}\right)}\left|\sum_{\mathbf{v} \in q L+L \mathbf{a}} \rho_{\sqrt{2} r}(\mathbf{v}) \cdot e^{2 \pi i \cdot\left\langle\mathbf{v}, \frac{\mathbf{y}}{R}\right\rangle} \rho_{\sqrt{2} \sigma}\left(t^{\prime}-\left\langle\mathbf{x}^{\prime}, \mathbf{v}\right\rangle\right)\right|^{2} \tag{6}
\end{align*}
$$
\]

where we can drop $\bmod q$ in the approximation since we set the parameters so that, with overwhelming probability over the randomness of e and \mathbf{v}, t^{\prime} can be written as $t^{\prime}=\left\langle\mathbf{x}^{\prime}, \mathbf{v}\right\rangle+e$ without $\bmod q$.

One can compute with a little effort that in Equation (6) the term associated with a fixed t^{\prime} is

$$
\begin{align*}
& \sum_{\mathbf{v} \in q L+L \mathbf{a}} \rho_{\sqrt{2} r}(\mathbf{v}) \cdot e^{2 \pi i \cdot\left\langle\mathbf{v}, \frac{\mathbf{y}}{R}\right\rangle} \rho_{\sqrt{2} \sigma}\left(t^{\prime}-\left\langle\mathbf{x}^{\prime}, \mathbf{v}\right\rangle\right) \\
&= \sum_{\mathbf{v} \in q L+L \mathbf{a}} \rho_{\sqrt{2 \Sigma}}\left(\mathbf{v}-\mathbf{m}_{t^{\prime}}\right) \cdot e^{2 \pi i \cdot\langle\mathbf{v}, \mathbf{y} / R\rangle} \tag{7}\\
&={ }_{(1)} \sum_{\mathbf{w} \in(q L)^{*}} \rho_{\sqrt{\Sigma^{-1} / 2}}(\mathbf{w}-\mathbf{y} / R) \cdot e^{2 \pi i\left\langle\mathbf{w}, L \mathbf{a}-\mathbf{m}_{t^{\prime}}\right\rangle} \cdot e^{2 \pi i \cdot\left\langle\mathbf{m}_{t^{\prime}}, \mathbf{y} / R\right\rangle} \\
& \approx_{(2)} \rho \sqrt{\Sigma^{-1} / 2} \\
&\left(\mathbf{y}^{\prime} / R\right) \cdot e^{2 \pi i\left\langle\kappa(q L)^{*}(\mathbf{y} / R), L \mathbf{a}-\mathbf{m}_{t^{\prime}}\right\rangle} \cdot e^{2 \pi i \cdot\left\langle\mathbf{m}_{\left.t^{\prime}, \mathbf{y} / R\right\rangle}\right.}
\end{align*}
$$

where $\mathbf{m}_{t^{\prime}}:=\frac{r^{2} t^{\prime}}{r^{2}\left\|\mathbf{x}^{\prime}\right\|^{2}+\sigma^{2}} \mathbf{x}^{\prime}, \Sigma:=r^{2} I-\frac{r^{4} \mathbf{x}^{\prime} \mathbf{x}^{\prime T}}{r^{2}\left\|\mathbf{x}^{\prime}\right\|^{2}+\sigma^{2}}, \Sigma^{-1}=\frac{I}{r^{2}}+\frac{\mathbf{x}^{\prime} \mathbf{x}^{\prime T}}{\sigma^{2}}$ and $\rho_{\sqrt{\Sigma}}(\mathbf{z}):=\mathrm{e}^{-\pi \mathbf{z}^{T} \Sigma^{-1} \mathbf{z}}$ (without normalization).
(1) in Equation (7) is due to the Poisson Summation Formula. (2) in Equation (7) can be proved by directly applying the generalized tail bound Corollary 9 for multi-variate Gaussian, proved in the appendix, with Σ having two singular values r^{2} and $r^{2} \cdot \frac{\sigma^{2}}{r^{2}\left\|\mathbf{x}^{\prime}\right\|^{2}+\sigma^{2}}$.
Hence, the distribution of \mathbf{y} is approximately proportional to $\rho_{\sqrt{\Sigma^{-1}} / 2}\left(\mathbf{y}^{\prime} / R\right)$ that only depends on \mathbf{y}^{\prime}. Therefore the distribution of \mathbf{y} / R can be seen as ellipsoids centered at lattice points of $(q L)^{*}$ whose direction of major axes is \mathbf{x}^{\prime}.
Moreover, one can prove that $\left|(q L)^{*}+\mathbf{y}^{\prime} / R \cap \mathbb{Z}_{R}^{n}\right|$ is the same for all \mathbf{y}^{\prime} / R, since $(q L)^{*}$ is a suplattice of $\frac{1}{q} \mathbb{Z}^{n}$ and therefore the cube $[-1 / 2,1 / 2)^{n}$ can be viewed as containing an integer number of parallelepiped $\mathcal{P}\left((q L)^{*}\right)$. Hence, the distribution of \mathbf{y}^{\prime} / R is proportional to $\rho_{\sqrt{\Sigma^{-1} / 2}}\left(\mathbf{y}^{\prime} / R\right)$, i.e., \mathbf{y}^{\prime} / R follows a multivariate Gaussian distribution. So we can bound the length of \mathbf{y}^{\prime} / R :

$$
\begin{equation*}
\left\|\mathbf{y}^{\prime}\right\| / R \leq \sqrt{n} \cdot \frac{\sqrt{r^{2}\left\|\mathbf{x}^{\prime}\right\|^{2}+\sigma^{2}}}{2 \sigma r} \tag{8}
\end{equation*}
$$

It follows that $\theta=\frac{r^{2}\left\langle\mathbf{x}^{\prime}, \mathbf{y}^{\prime} / R\right\rangle}{r^{2}\left\|\mathbf{x}^{\prime}\right\|^{2}+\sigma^{2}}$ in the phase of the amplitude of $\left|\psi_{\langle\mathbf{s}, \mathbf{a}\rangle, \mathbf{y}}\right\rangle$ follows the Gaussian distribution ρ_{β} where $\beta:=\frac{r\left\|\mathbf{x}^{\prime}\right\|}{2 \sigma \sqrt{r^{2}\left\|\mathbf{x}^{\prime}\right\|^{2}+\sigma^{2}}}$.

3.3 Where can we find the secret?

Observe that the distribution of \mathbf{y} / R contains the information we want. To be more specific, the shape of the support of \mathbf{y} / R can be seen as ellipsoids centered at lattice points of $(q L)^{*}$, and the
direction and the length of their major axes are related to \mathbf{x}^{\prime}. It seems plausible that we can utilize \mathbf{y} by extracting information about the secret from the distribution of \mathbf{y} / R.
In fact, the distribution of $\mathbf{y} / R, \mathbf{y}^{\prime} / R$ and θ all contains information about \mathbf{x}^{\prime} :

1. The width of \mathbf{y}^{\prime} / R is inversely related to $\left\|\mathbf{x}^{\prime}\right\|$. However \mathbf{y}^{\prime} / R cannot be obtained directly. (Obtaining \mathbf{y}^{\prime} / R from \mathbf{y} is an instance of CVP $L_{L^{*}, \frac{q \sqrt{n} \sqrt{\sigma^{2}+\alpha^{2} q^{2}}}{2 \sigma r} \text {, which is harder than the }}$ $\mathrm{CVP}_{L^{*}, \alpha q / r}$ problem we're aiming to solve.)
2. The shape of the support of \mathbf{y} / R is related to the direction of \mathbf{x}^{\prime}. However these ellipsoids are cut by the boundaries of the cube $[-1 / 2,1 / 2)^{n}$, leading to a troublesome support of \mathbf{y} / R.
3. The width of the distribution of θ is positively related to $\left\|\mathbf{x}^{\prime}\right\|$. However θ cannot be obtained directly either.

4 Bypassing |LWE〉

The above attempt inspires us to use the distribution of our measurement results to recover useful information. Here we no longer insist on first reducing standard lattice problems to $\mathrm{S}|\mathrm{LWE}\rangle$. In fact, we only need to give an algorithm that solves CVP using polynomial discrete Gaussian states. Combining the algorithm with step 2 and step 3 of our plan, we can get an iterative algorithm for standard lattice problems.
Given an instance \mathbf{x} of CVP, we begin with discrete Gaussian state

$$
\sum_{\mathbf{v} \in L} \rho_{\sqrt{2 r}}(\mathbf{v})|\mathbf{v}\rangle
$$

Again we measure $\mathbf{a}:=L^{-1} \mathbf{v} \bmod q$ to get our favorite state

$$
\sum_{\mathbf{v} \in q L+L \mathbf{a}} \rho_{\sqrt{2} r}(\mathbf{v})|\mathbf{v}\rangle
$$

We apply a unitary on the state to send $\langle\mathbf{x}, \mathbf{v}\rangle \bmod q$ to the phase and obtain

$$
\begin{equation*}
\sum_{\mathbf{v} \in q L+L \mathbf{a}} \rho_{\sqrt{2} r}(\mathbf{v}) \cdot e^{\frac{2 \pi i\langle\mathbf{x}, \mathbf{v}\rangle}{q}}|\mathbf{v}\rangle \tag{9}
\end{equation*}
$$

Apply QFT $_{R}$ for $R>r \sqrt{n}$ and we can get

$$
\begin{equation*}
|\psi\rangle:=\sum_{\mathbf{y} \in \mathbb{Z}_{R}^{n}} \sum_{\mathbf{v} \in q L+L \mathbf{a}} \rho_{\sqrt{2} r}(\mathbf{v}) \cdot e^{2 \pi i \frac{i(\mathbf{x}, \mathbf{v}\rangle}{q}} \cdot e^{2 \pi i \frac{\langle\mathbf{y}, \mathbf{v}\rangle}{R}}|\mathbf{y}\rangle \tag{10}
\end{equation*}
$$

From Poisson summation formula,

$$
\begin{equation*}
|\psi\rangle=\sum_{\mathbf{y} \in \mathbb{Z}_{R}^{n}} \sum_{\mathbf{w} \in(q L)^{*}} \rho_{\frac{1}{\sqrt{2 r}}}\left(\mathbf{w}-\frac{\mathbf{x}^{\prime}}{q}-\frac{\mathbf{y}}{R}\right) \cdot e^{2 \pi i\left(\langle\mathbf{w}, L \mathbf{a}\rangle+\frac{\langle\mathbf{s}, \mathbf{a}\rangle}{q}\right)}|\mathbf{y}\rangle \tag{11}
\end{equation*}
$$

Then we measure $|\mathbf{y}\rangle$. The resulting vector \mathbf{y} / R, when parsed as a rational vector in $[-1 / 2,1 / 2)^{n}$, is expected to stay with a radius of $\sqrt{n} / 2 r$ around $(q L)^{*}-\frac{\mathbf{x}^{\prime}}{q}$.
Here is an intuitive idea of estimating \mathbf{x}^{\prime}. We collect many samples of \mathbf{y} / R and then take the average. We expect the average to be $-\frac{x^{\prime}}{q}$, which is enough for solving CVP.
Unfortunately, our intuition is not valid. To be more specific, when r is large, say exponential, then the length of the shift $\frac{\mathrm{x}^{\prime}}{q}$ is less than $\frac{\alpha q}{r} \cdot \frac{1}{q}=\frac{\alpha}{r}$, which is negligible and can not be detected by efficient algorithms. We can also start from some special lattices such that initially r is small, say polynomial, but then the intersection between the boundary of $[-1 / 2,1 / 2)^{n}$ and the balls of radius $\sqrt{n} / 2 r$ around $(q L)^{*}-\frac{\mathbf{x}^{\prime}}{q}$ becomes annoying and thus the average of \mathbf{y} / R is not $-\frac{\mathbf{x}^{\prime}}{q}$.

References

[Ban93] Wojciech Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Mathematische Annalen, 296(1):625-635, 1993. 7
[CLZ21] Yilei Chen, Qipeng Liu, and Mark Zhandry. Quantum algorithms for variants of averagecase lattice problems via filtering. Cryptology ePrint Archive, Paper 2021/1093, 2021. https://eprint.iacr.org/2021/1093. 1
[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In STOC, pages 197-206, 2008. 2
[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM, 56(6):34:1-34:40, 2009. 1, 2, 10

A Appendix

A. 1 An extension of Banaszczyk's Gaussian tail bounds over lattices

Recall Banaszczyk's Gaussian tail bounds:
Lemma 6 (Lemma 1.5 [Ban93]). For any n-dimensional lattice $L, \mathbf{c} \in \mathbb{R}^{n}$, and $r \geq \frac{1}{\sqrt{2 \pi}}$,

$$
\rho\left((L-\mathbf{c}) \backslash r \sqrt{n} B_{2}^{n}\right)<2\left(r \sqrt{2 \pi e} \cdot e^{-\pi r^{2}}\right)^{n} \rho(L) .
$$

We extend this tail bounds' RHS to an aribitrary shift of the lattice:
Lemma 7. For any n-dimensional lattice L, such that $\lambda_{1}(L)>3 \sqrt{n}$, and any $\mathbf{y} \in \mathbb{R}^{n}$ such that $\operatorname{dist}(\mathbf{y}, L)<\sqrt{n}$, we have

$$
\begin{equation*}
\rho\left((L-\mathbf{y}) \backslash \frac{\lambda_{1}(L)}{2} \cdot B_{2}^{n}\right)<2^{-n} \rho(L-\mathbf{y}) . \tag{12}
\end{equation*}
$$

Proof. First we prove that since $\lambda_{1}(L)>3 \sqrt{n}$, we have $\rho(L)<1+2^{-n}$. To do so, we apply Lemma 6 with $\mathbf{c}=\mathbf{0}$ and $r \sqrt{n}=\lambda_{1}(L) / 2$, which gives

$$
\begin{align*}
\rho\left(L \backslash \frac{\lambda_{1}(L)}{2} \cdot B_{2}^{n}\right) & <2\left(\frac{\lambda_{1}(L)}{2 \sqrt{n}} \sqrt{2 \pi e} \cdot e^{-\pi\left(\frac{\lambda_{1}(L)}{2 \sqrt{n}}\right)^{2}}\right)^{n} \cdot \rho(L) \tag{13}\\
& =2 \cdot e^{n \ln \left(\lambda_{1}(L) / \sqrt{n}\right)-\pi \lambda_{1}(L)^{2} / 4+n \ln \sqrt{\pi e / 2}} \cdot \rho(L)
\end{align*}
$$

Let $\lambda_{1}(L)=x \cdot \sqrt{n}$, then consider the function

$$
\begin{equation*}
f(x):=\ln (x)-\pi x^{2} / 4+\ln (\sqrt{\pi e / 2}) \tag{14}
\end{equation*}
$$

The derivative of f is

$$
\begin{equation*}
f^{\prime}(x)=1 / x-\pi x / 2 \tag{15}
\end{equation*}
$$

Therefore when $x>\sqrt{2 / \pi}, f$ is decreasing. When $x>3, f(x)<-5.24$.
Hence if $\lambda_{1}(L)>3 \sqrt{n}$,

$$
\rho\left(L \backslash \frac{\lambda_{1}(L)}{2} \cdot B_{2}^{n}\right)<2 \cdot e^{-5.24 n} \cdot \rho(L),
$$

which means $\rho(L)<1+2^{-n}$
We continue proving Lemma 7 by applying Lemma 6 with $\mathbf{c}=\mathbf{y}$ and $r \sqrt{n}=\lambda_{1}(L) / 2$. This gives

$$
\begin{align*}
\rho\left((L-\mathbf{y}) \backslash \frac{\lambda_{1}(L)}{2} \cdot B_{2}^{n}\right) & <2\left(\frac{\lambda_{1}(L) \sqrt{\pi e}}{\sqrt{2 n}}\right)^{n} \cdot e^{-\pi \lambda_{1}(L)^{2} / 4} \rho(L) \tag{16}\\
& \ll_{(1)} 3\left(\frac{\lambda_{1}(L) \sqrt{\pi e}}{\sqrt{2 n}}\right)^{n} \cdot e^{-\pi \lambda_{1}(L)^{2} / 4}
\end{align*}
$$

where (1) uses $\rho(L)<1+2^{-n}$.
Let $\mathbf{y}^{\prime}=\mathbf{y}-\kappa_{L}(\mathbf{y})$, then $\left\|\mathbf{y}^{\prime}\right\|=\operatorname{dist}(\mathbf{y}, L)<\sqrt{n}$. Then

$$
\begin{align*}
\frac{\rho\left((L-\mathbf{y}) \backslash \frac{\lambda_{1}(L)}{2} \cdot B_{2}^{n}\right)}{\rho\left(\mathbf{y}^{\prime}\right)} & <3 e^{n \ln \left(\frac{\lambda_{1}(L) \sqrt{\pi e}}{\sqrt{2 n}}\right)-\pi \lambda_{1}(L)^{2} / 4+\pi\left\|\mathbf{y}^{\prime}\right\|^{2}} \\
& <3 e^{n \ln \left(\lambda_{1}(L) / \sqrt{n}\right)-\pi \lambda_{1}(L)^{2} / 4+n \pi+n \ln \sqrt{\pi e / 2}} \tag{17}\\
& <{ }_{1} 3 e^{n \ln (3)-\frac{9}{4} n \pi+n \pi+n \ln \sqrt{\pi e / 2}} \\
& =3 e^{n\left(\ln 3-\frac{5}{4} \pi+\ln \sqrt{\pi e / 2}\right)},
\end{align*}
$$

where (1) is obtained by taking the derivative similar as before: let $\lambda_{1}(L)=x \cdot \sqrt{n}$, then consider the function

$$
\begin{equation*}
g(x):=\ln (x)-\pi x^{2} / 4+\ln (\sqrt{\pi e / 2})+\pi \tag{18}
\end{equation*}
$$

The derivative of g is

$$
\begin{equation*}
g^{\prime}(x)=1 / x-\pi x / 2 \tag{19}
\end{equation*}
$$

Therefore when $x>\sqrt{2 / \pi}, g$ is decreasing. When $x>3, g(x)<-2.1$.

Hence when $\lambda_{1}(L)>3 \sqrt{n}$ and $\left\|\mathbf{y}^{\prime}\right\|<\sqrt{n}$,

$$
\frac{\rho\left((L-\mathbf{y}) \backslash \frac{\lambda_{1}(L)}{2} \cdot B_{2}^{n}\right)}{\rho\left(\mathbf{y}^{\prime}\right)}<2^{-2 n}
$$

Since $\rho(L-\mathbf{y})=\rho\left((L-\mathbf{y}) \backslash \frac{\lambda_{1}(L)}{2} \cdot B_{2}^{n}\right)+\rho\left(\mathbf{y}^{\prime}\right)$, we have

$$
\begin{equation*}
\rho\left((L-\mathbf{y}) \backslash \frac{\lambda_{1}(L)}{2} \cdot B_{2}^{n}\right)<2^{-n} \rho(L-\mathbf{y}) . \tag{20}
\end{equation*}
$$

For technical reasons, we need a variant of Lemma 7:
Lemma 8. For any n-dimensional lattice L and any $\mathbf{y} \in \mathbb{R}^{n}$, such that $\lambda_{1}(L)>3 \operatorname{dist}(\mathbf{y}, L) / d$ and $\lambda_{1}(L)>3 \sqrt{n}$, we have

$$
\begin{equation*}
\rho\left((L-\mathbf{y}) \backslash \frac{\lambda_{1}(L)}{2} \cdot B_{2}^{n}\right)<2^{-n} \rho_{d}(L-\mathbf{y}) . \tag{21}
\end{equation*}
$$

Remark: we can treat d as minor axis / major axis, which is less than 1 .
Proof. First we prove that since $\lambda_{1}(L)>3 \sqrt{n}$, we have $\rho(L)<1+2^{-n}$. To do so, we apply Lemma 6 with $\mathbf{c}=\mathbf{0}$ and $r \sqrt{n}=\lambda_{1}(L) / 2$, which gives

$$
\begin{align*}
\rho\left(L \backslash \frac{\lambda_{1}(L)}{2} \cdot B_{2}^{n}\right) & <2\left(\frac{\lambda_{1}(L)}{2 \sqrt{n}} \sqrt{2 \pi e} \cdot e^{-\pi\left(\frac{\lambda_{1}(L)}{2 \sqrt{n}}\right)^{2}}\right)^{n} \cdot \rho(L) \tag{22}\\
& =2 \cdot e^{n \ln \left(\lambda_{1}(L) / \sqrt{n}\right)-\pi \lambda_{1}(L)^{2} / 4+n \ln \sqrt{\pi e / 2}} \cdot \rho(L)
\end{align*}
$$

Let $\lambda_{1}(L)=x \cdot \sqrt{n}$, then consider the function

$$
\begin{equation*}
f(x):=\ln (x)-\pi x^{2} / 4+\ln (\sqrt{\pi e / 2}) \tag{23}
\end{equation*}
$$

The derivative of f is

$$
\begin{equation*}
f^{\prime}(x)=1 / x-\pi x / 2 \tag{24}
\end{equation*}
$$

Therefore when $x>\sqrt{2 / \pi}, f$ is decreasing. When $x>3, f(x)<-5.24$.
Hence if $\lambda_{1}(L)>3 \sqrt{n}$,

$$
\rho\left(L \backslash \frac{\lambda_{1}(L)}{2} \cdot B_{2}^{n}\right)<2 \cdot e^{-5.24 n} \cdot \rho(L),
$$

which means $\rho(L)<1+2^{-n}$
We continue proving Lemma 8 by applying Lemma 6 with $\mathbf{c}=\mathbf{y}$ and $r \sqrt{n}=\lambda_{1}(L) / 2$. This gives

$$
\begin{align*}
\rho\left((L-\mathbf{y}) \backslash \frac{\lambda_{1}(L)}{2} \cdot B_{2}^{n}\right) & <2\left(\frac{\lambda_{1}(L) \sqrt{\pi e}}{\sqrt{2 n}}\right)^{n} \cdot e^{-\pi \lambda_{1}(L)^{2} / 4} \rho(L) \\
& <{ }_{(1)} 3\left(\frac{\lambda_{1}(L) \sqrt{\pi e}}{\sqrt{2 n}}\right)^{n} \cdot e^{-\pi \lambda_{1}(L)^{2} / 4} \tag{25}
\end{align*}
$$

where (1) uses $\rho(L)<1+2^{-n}$.
Let $\mathbf{y}^{\prime}=\mathbf{y}-\kappa_{L}(\mathbf{y})$, then $\left\|\mathbf{y}^{\prime}\right\| / d=\operatorname{dist}(\mathbf{y}, L) / d<\lambda_{1}(L) / 3$. Then

$$
\begin{align*}
\frac{\rho\left((L-\mathbf{y}) \backslash \frac{\lambda_{1}(L)}{2} \cdot B_{2}^{n}\right)}{\rho_{d}\left(\mathbf{y}^{\prime}\right)} & <3 e^{n \ln \left(\frac{\lambda_{1}(L) \sqrt{\pi e}}{\sqrt{2 n}}\right)-\pi \lambda_{1}(L)^{2} / 4+\pi\left\|\mathbf{y}^{\prime}\right\|^{2} / d^{2}} \\
& <3 e^{n \ln \left(\lambda_{1}(L) / \sqrt{n}\right)-\pi \lambda_{1}(L)^{2} / 4+\pi \lambda_{1}(L)^{2} / 9+n \ln \sqrt{\pi e / 2}} \tag{26}\\
& <{ }_{(1)} 3 e^{n \ln (3)-\frac{9}{4} n \pi+n \pi+n \ln \sqrt{\pi e / 2}} \\
& =3 e^{n\left(\ln 3-\frac{5}{4} \pi+\ln \sqrt{\pi e / 2}\right)}
\end{align*}
$$

where (1) is obtained by taking the derivative similar as before: let $\lambda_{1}(L)=x \cdot \sqrt{n}$, then consider the function

$$
\begin{equation*}
g(x):=\ln (x)-5 \pi x^{2} / 36+\ln (\sqrt{\pi e / 2}) \tag{27}
\end{equation*}
$$

The derivative of g is

$$
\begin{equation*}
g^{\prime}(x)=1 / x-5 \pi x / 18 \tag{28}
\end{equation*}
$$

Therefore when $x>\sqrt{\frac{18}{5 \pi}}, g$ is decreasing. When $x>3, g(x)<-2.1$.
Hence when $\lambda_{1}(L)>3 \operatorname{dist}(\mathbf{y}, L) / d$ and $\lambda_{1}(L)>3 \sqrt{n}$,

$$
\frac{\rho\left((L-\mathbf{y}) \backslash \frac{\lambda_{1}(L)}{2} \cdot B_{2}^{n}\right)}{\rho_{d}\left(\mathbf{y}^{\prime}\right)}<2^{-2 n} .
$$

Since $\rho_{d}(L-\mathbf{y})=\rho_{d}\left((L-\mathbf{y}) \backslash \frac{\lambda_{1}(L)}{2} \cdot B_{2}^{n}\right)+\rho_{d}\left(\mathbf{y}^{\prime}\right)$, we have

$$
\begin{equation*}
\rho\left((L-\mathbf{y}) \backslash \frac{\lambda_{1}(L)}{2} \cdot B_{2}^{n}\right)<2^{-n} \rho_{d}(L-\mathbf{y}) \tag{29}
\end{equation*}
$$

Corollary 9. For any n-dimensional lattice L, any $y \in \mathbb{R}^{n}$ and any symmetric and positive matrix Σ whose smallest singular value is a^{2} and whose largest singular value is b^{2}, such that $\lambda_{1}(L)>$ $\frac{3 b}{a} \operatorname{dist}(\mathbf{y}, L)$ and $\lambda_{1}(L)>3 \sqrt{n} / a$, we have

$$
\begin{equation*}
\rho_{\Sigma^{-1}}\left((L-\mathbf{y}) \backslash \frac{\lambda_{1}(L)}{2} \cdot B_{2}^{n}\right) \leq \rho_{\frac{1}{a}}\left((L-\mathbf{y}) \backslash \frac{\lambda_{1}(L)}{2} \cdot B_{2}^{n}\right)<2^{-n} \rho_{\frac{1}{b}}(L-\mathbf{y}) \leq 2^{-n} \rho_{\Sigma^{-1}}(L-\mathbf{y}) . \tag{30}
\end{equation*}
$$

A. 2 Smoothing of Gaussian with a phase

We generalize [Reg09, Claim 3.9] to handle Gaussian function with a phase.
Theorem 10. Let L be a lattice, $\mathbf{u} \in \mathbb{R}^{n}$ be any vector, $r, s>0$ be any real numbers, $t:=\sqrt{r^{2}+s^{2}}$. Consider the function Y on $\mathbf{x} \in \mathbb{R}^{n}$ as the convolution of

1. \mathbf{y} with support $L+\mathbf{u}$ and amplitude $h(\mathbf{y}):=\rho_{r}(\mathbf{y}) \cdot e^{2 \pi i \cdot\langle\mathbf{y}, \mathbf{z}\rangle}$ for some fixed $\mathbf{z} \in \mathbb{R}^{n}$ such that $d\left(\mathbf{z}, L^{*}\right)<\frac{t}{r s} \sqrt{n}$;
2. A noise vector taken from ρ_{s}.

Suppose $\frac{r s}{t} \lambda_{1}\left(L^{*}\right)>3 \sqrt{n}$. Then $Y(\mathbf{x}) \approx \rho_{t}(\mathbf{x}) \cdot e^{2 \pi i \cdot(r / t)^{2}\left\langle\mathbf{z}-\kappa_{L^{*}}(\mathbf{z}), \mathbf{x}\right\rangle}$.
Proof. The function Y can be written as

$$
\begin{align*}
Y(\mathbf{x}) & =\sum_{\mathbf{y} \in L+\mathbf{u}} h(\mathbf{y}) \rho_{s}(\mathbf{x}-\mathbf{y}) \\
& =\sum_{\mathbf{y} \in L+\mathbf{u}} \exp \left(-\pi\left(\frac{\|\mathbf{y}\|^{2}}{r^{2}}+\frac{\|\mathbf{x}-\mathbf{y}\|^{2}}{s^{2}}\right)\right) \cdot e^{2 \pi i \cdot\langle\mathbf{y}, \mathbf{z}\rangle} \\
& =\exp \left(-\frac{\pi}{r^{2}+s^{2}}\|\mathbf{x}\|^{2}\right) \sum_{\mathbf{y} \in L+\mathbf{u}} \exp \left(-\pi\left(\frac{t}{r s}\right)^{2} \cdot\left\|\mathbf{y}-\frac{r^{2}}{t^{2}} \mathbf{x}\right\|^{2}\right) \cdot e^{2 \pi i \cdot\langle\mathbf{y}, \mathbf{z}\rangle} \tag{31}\\
& =\rho_{t}(\mathbf{x}) \cdot \sum_{\mathbf{y} \in L+\mathbf{u}} \exp \left(-\pi\left(\frac{t}{r s}\right)^{2} \cdot\left\|\mathbf{y}-\frac{r^{2}}{t^{2}} \mathbf{x}\right\|^{2}\right) \cdot e^{2 \pi i \cdot\langle\mathbf{y}, \mathbf{z}\rangle}
\end{align*}
$$

For any $\mathbf{y} \in \mathbb{R}^{n}$, let $g(\mathbf{y}):=\rho_{\frac{r \underline{s}}{t}}(\mathbf{y}) \cdot e^{2 \pi i \cdot(\mathbf{y}, \mathbf{z}\rangle}$. Then

$$
\hat{g}(\mathbf{w})=\rho_{\frac{t}{r s}}(\mathbf{w}-\mathbf{z})
$$

Then

$$
\begin{align*}
& \sum_{\mathbf{y} \in L+\mathbf{u}} \exp \left(-\pi\left(\frac{t}{r s}\right)^{2} \cdot\left\|\mathbf{y}-\frac{r^{2}}{t^{2}} \mathbf{x}\right\|^{2}\right) \cdot e^{2 \pi i \cdot\langle\mathbf{y}, \mathbf{z}\rangle} \\
= & \sum_{\mathbf{y} \in L} \rho_{\frac{r s}{t}}\left(\mathbf{y}+\mathbf{u}-\frac{r^{2}}{t^{2}} \mathbf{x}\right) \cdot e^{2 \pi i \cdot\langle\mathbf{y}+\mathbf{u}, \mathbf{z}\rangle} \\
= & \sum_{\mathbf{y} \in L} g\left(\mathbf{y}+\mathbf{u}-\frac{r^{2}}{t^{2}} \mathbf{x}\right) \cdot e^{2 \pi i \cdot\left\langle\frac{r^{2}}{t^{2}} \mathbf{x}, \mathbf{z}\right\rangle} \tag{32}\\
= & (1) \\
= & \sum_{\mathbf{w} \in L^{*}} \hat{g}(\mathbf{w}) \cdot e^{2 \pi i \cdot\left\langle\mathbf{u}-(r / t)^{2} \mathbf{x}, \mathbf{w}\right\rangle} \cdot e^{2 \pi i \cdot\left\langle\frac{r^{2}}{t^{2}} \mathbf{x}, \mathbf{z}\right\rangle} \\
= & \sum_{\mathbf{w} \in L^{*}} \rho_{t / r s}(\mathbf{w}-\mathbf{z}) \cdot e^{2 \pi i \cdot\left(\langle\mathbf{u}, \mathbf{w}\rangle-\left\langle(r / t)^{2} \mathbf{x}, \mathbf{w}-\mathbf{z}\right\rangle\right)}
\end{align*}
$$

where (1) uses Poisson Summation Formula (ignoring the normalization factor $(r s / t)^{n} \operatorname{det}\left(L^{*}\right)$).
Applying Lemma 7 with the lattice L being $\frac{r s}{t} L^{*}$ here, which is $\frac{r s}{t}(q L)^{*}$ in the main theorem; the vector \mathbf{y} being $\frac{r s}{t} \cdot \mathbf{z}$, which is $\frac{r s}{t} \cdot \frac{\mathbf{y}}{R}$ in the main theorem; $\lambda_{1}(L)$ being $\frac{r s}{t} \lambda_{1}\left(L^{*}\right)$ here, which is $\frac{r s}{t q} \lambda_{1}\left(L^{*}\right)$ in the main theorem.
Recall that $s\left\|\mathbf{x}^{\prime}\right\|=\sigma$ and $t=\sqrt{r^{2}+s^{2}} . \operatorname{dist}(\mathbf{y}, L)$ in Lemma 7 satisfies

$$
\operatorname{dist}(\mathbf{y}, L)<\sqrt{n} \cdot \frac{\sqrt{\sigma^{2}+r^{2}\left\|\mathbf{x}^{\prime}\right\|^{2}}}{\sigma r} \cdot \frac{r s}{t}=\sqrt{n} \cdot \frac{\sqrt{\left(s\left\|\mathbf{x}^{\prime}\right\|\right)^{2}+r^{2}\left\|\mathbf{x}^{\prime}\right\|^{2}}}{s\left\|\mathbf{x}^{\prime}\right\| r} \cdot \frac{r s}{\sqrt{r^{2}+s^{2}}}=\sqrt{n}
$$

Back to Eqn. (32), when $\frac{r s}{t}>\frac{3 \sqrt{n}}{\lambda_{1}\left(L^{*}\right)}$ and $\left\|\mathbf{z}^{\prime}\right\|<\frac{t \sqrt{n}}{r s}$ with $\mathbf{z}^{\prime}:=\mathbf{z}-\kappa_{L^{*}}(\mathbf{z})$, we have

$$
\begin{equation*}
\sum_{\mathbf{w} \in L^{*}} \rho_{t / r s}(\mathbf{w}-\mathbf{z}) \cdot e^{2 \pi i \cdot\left(\langle\mathbf{u}, \mathbf{w}\rangle-\left\langle(r / t)^{2} \mathbf{x}, \mathbf{w}-\mathbf{z}\right\rangle\right)} \approx \rho_{t / r s}\left(\mathbf{z}^{\prime}\right) \cdot e^{2 \pi i \cdot\left(\left\langle\mathbf{u}, \kappa_{L^{*}}(\mathbf{z})\right\rangle+\left\langle(r / t)^{\mathbf{x}} \mathbf{x}, \mathbf{z}^{\prime}\right\rangle\right)} \tag{33}
\end{equation*}
$$

Then $Y(\mathbf{x}) \propto \rho_{t}(\mathbf{x}) \cdot e^{2 \pi i \cdot(r / t)^{2}\left\langle\mathbf{z}-\kappa_{L^{*}}(\mathbf{z}), \mathbf{x}\right\rangle}$.

A. 3 Linear combination of continuous Gaussian with a phase

Theorem 11. For any $\mathbf{x} \in \mathbb{R}^{n}$ such that $\|\mathbf{x}\|>0$. Suppose the amplitude of $\mathbf{v} \in \mathbb{R}^{n}$ is $f(\mathbf{v})=$ $\rho_{r}(\mathbf{v}) \cdot e^{2 \pi i(\langle\mathbf{v}, \mathbf{y}\rangle+w)}$ for some fixed $\mathbf{y} \in \mathbb{R}^{n}$ and $w \in \mathbb{R}$, then the amplitude of $u:=\langle\mathbf{x}, \mathbf{v}\rangle$ is

$$
\begin{equation*}
g(u)=\lambda \cdot \rho_{\|\mathbf{x}\| \cdot r}(u) \cdot e^{2 \pi i \cdot u \cdot \frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|^{2}}} . \tag{34}
\end{equation*}
$$

where λ is some fixed complex number.
Proof. Let $\mathbf{v}^{\prime} \in \mathbb{R}^{n}$ be any real vector such that $\left\langle\mathbf{v}^{\prime}, \mathbf{y}\right\rangle=w$. Then the amplitude of $\mathbf{v} \in \mathbb{R}^{n}$ can be written as

$$
\begin{equation*}
f(\mathbf{v})=\rho_{r}(\mathbf{v}) \cdot e^{2 \pi i\left\langle\mathbf{v}+\mathbf{v}^{\prime}, \mathbf{y}\right\rangle} \tag{35}
\end{equation*}
$$

For $j \in[n]$, let g_{j} denote the amplitude of $u_{j}:=x_{j} \cdot v_{j}$. Then, when $x_{j}=0, g_{j}=\delta_{0} \cdot e^{2 \pi i \cdot v_{j}^{\prime} \cdot y_{j}}$, where δ denotes the indicator function; when $x_{j} \neq 0$,

$$
\begin{equation*}
g_{j}\left(u_{j}\right)=\rho_{x_{j} \cdot r}\left(u_{j}\right) \cdot e^{2 \pi i \cdot\left(u_{j} \cdot y_{j} / x_{j}\right)+v_{j}^{\prime} \cdot y_{j}} \tag{36}
\end{equation*}
$$

Then the Fourier transform of g_{j} is

$$
\hat{g}_{j}(z)= \begin{cases}e^{2 \pi i \cdot v_{j}^{\prime} \cdot y_{j}} & \text { when } x_{j}=0 \tag{37}\\ e^{-\pi r^{2}\left(x_{i} \cdot z-y_{i}\right)^{2}} \cdot e^{2 \pi i \cdot v_{j}^{\prime} \cdot y_{j}} & \text { when } x_{j} \neq 0\end{cases}
$$

So the product of $\hat{g}_{1}, \ldots, \hat{g}_{n}$ is

$$
\begin{equation*}
\hat{g}(z):=\prod_{j=1}^{n} \hat{g}_{j}(z)=e^{-\pi r^{2}\left(\|\mathbf{x}\|^{2} \cdot z^{2}-2\langle\mathbf{x}, \mathbf{y}\rangle \cdot z+\delta\right)} \cdot e^{2 \pi i \cdot w}=e^{-\pi r^{2}\|\mathbf{x}\|^{2} \cdot(z-\theta)^{2}+\delta^{\prime}} \cdot e^{2 \pi i \cdot w} \tag{38}
\end{equation*}
$$

where δ and δ^{\prime} are some real numbers that does not depend on $\mathbf{x}, \theta=\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|^{2}}$ is a real number that depends on \mathbf{x}.
Then the amplitude of $u:=\langle\mathbf{x}, \mathbf{v}\rangle \in \mathbb{R}$ is the convolution of g_{j}, which is the Fourier transform of \hat{g}. So the amplitude of u is

$$
\begin{equation*}
g(u)=\hat{\hat{g}}(u)=\lambda \cdot \rho_{\|\mathbf{x}\| \cdot r}(u) \cdot e^{2 \pi i \cdot u \cdot \theta} . \tag{39}
\end{equation*}
$$

where λ is some fixed complex number.

[^0]: ${ }^{1}$ Actually the distribution of \mathbf{y} is approximately proportional to $\rho_{\sqrt{\Sigma^{-1}} / 2}\left(\mathbf{y}^{\prime} / R\right)$. See Section 3.2 for more detail.

