
Distributed Multipoint Function

November 29, 2022

What do we have:

1. Big-state DMPF (errorless)

2. OKVS-based DMPF

(a) OKVS through polynomial: errorless, inefficient

(b) OKVS through [sparse matrix||dense matrix]: empirically small error, practically ∝ t Gen time and
Eval/FullEval time independent to t.

(c) Compared to batch-code based DMPF: approximately ×2 faster FullEval

(d) Some regular/nonregular optimization in PCG application.

(e) Distributed key generation comparison

Definition 1. The class of t-point functions, with input from {0, 1}n and output from a group G, is {fA,B} where A

is a list of t distinct n-bit strings and B is a list of t G elements and fA,B(x) =

{
0G if x ̸∈ A

B[i] if x = A[i], 1 ≤ i ≤ t
.

1 Big-state DMPF

1.1 The scheme

We display the big-state DMPF scheme in figure 1.1.

1.2 Distributed key generation

We display a distributed key generation protocol for the big-state DMPF in 1.2.

2 A new scheme of DMPF basing on OKVS

We provide a new strategy to distribute a multipoint function with a constraint on the input size: n ≤ λ+ 1.

2.1 The raw scheme

The following algorithm in 2.1 is a distributed t-point function scheme with a control bit and without the convert
layer. Each key kb generated by Gen(1λ, A,B) can span a complete binary tree for party b, where each node contains
a (λ+ 1)-bit string sb||tb with sb being a λ-bit seed and tb being a control bit. The strings on the children of a node
is obtained by first using sb as PRG seed to get pseudorandom strings for both children, then applying a correction
to both strings if the control bit tb is 1. The correction is basing on the CW of the corresponding layer.

The correctness of the scheme is guaranteed by the invariance on the trees spanned by k0 and k1: if a node is not
on any accepting path, then the strings on this node in two trees are identical. If a node is on an accepting path,
then the seed strings are pseudorandom and independent, while the control bits must be distinct.

In the concrete pseudocode, A contains all accepting inputs, and A(i) contains all distinct length-i prefixes of such

inputs. S
(i)
b records all λ-bit seed strings at the nodes in the binary tree spanned by kb, corresponding to the prefixes

in A(i). T
(i)
b records all control bits at those nodes.

1

1: procedure Gen(1λ, A)
2: t← |A|, n← |A[1]|.
3: For 0 ≤ i ≤ n − 1, let A(i) be the sorted and deduplicated list of i-bit prefixes of strings in A. Specifically,

A(0) = [ϵ].
4: Let G : {0, 1}λ → {0, 1}2λ+2t be a public PRG.

5: Set S
(0)
b = [rb] and T

(0)
b = [b||0m−1] for b = 0, 1 where r0, r1 are sampled independently and randomly from

{0, 1}λ.
6: for i = 1 to n do
7: Let CW (i), S

(i)
0 , T

(i)
0 , S

(i)
1 , T

(i)
1 be empty lists.

8: for l = 1 to A(i−1) do
9: Parse G(S

(i−1)
b [l]) = sLb ||tLb ||sRb ||tRb for b = 0, 1 where sLb , s

R
b ∈ {0, 1}λ and tLb , t

R
b ∈ {0, 1}t.

10: if A(i−1)[l]||0 ∈ A(i) and A(i−1)[l]||1 ̸∈ A(i) then
11: d← the index of A(i−1)[l]||0 in A(i).
12: Append sR0 ⊕ sR1 ||tL0 ⊕ tL1 ⊕ ed||tR0 ⊕ tR1 to CW (i) where ed = 0d−110t−d.
13: else if A(i−1)[l]||1 ∈ A(i) and A(i−1)[l]||0 ̸∈ A(i) then
14: d← the index of A(i−1)[l]||1 in A(i).
15: Append sL0 ⊕ sL1 ||tL0 ⊕ tL1 ||tR0 ⊕ tR1 ⊕ ed to CW (i).
16: else ▷ both A(i−1)[l]||0 and A(i−1)[l]||1 are in A(i).
17: d← the index of A(i−1)[l]||0 in A(i).
18: Randomly sample r from {0, 1}λ.
19: Append r||tL0 ⊕ tL1 ⊕ ed||tR0 ⊕ tR1 ⊕ ed+1 to CW (i).
20: end if
21: end for
22: Randomly and independently sample t− |CW (i)| strings from {0, 1}λ+2t .
23: If i = n then skip the following for-loop.
24: for l = 1 to |A(i−1)| do
25: Parse G(S

(i−1)
b [l]) = sLb ||tLb ||sRb ||tRb for b = 0, 1.

26: Parse T
(i−1)
b [l] · CW (i) = ∆sb||∆tLb ||∆tRb for b = 0, 1.

27: if A(i−1)[l]||0 ∈ A(i) and A(i−1)[l]||1 ̸∈ A(i) then

28: Append sLb ⊕∆sb to S
(i)
b and tLb ⊕∆tLb to T

(i)
b , for b = 0, 1.

29: else if A(i−1)[l]||1 ∈ A(i) and A(i−1)[l]||0 ̸∈ A(i) then

30: Append sRb ⊕∆sb to S
(i)
b and tRb ⊕∆tRb to T

(i)
b , for b = 0, 1.

31: else
32: Append sLb ⊕∆sb to S

(i)
b and tLb ⊕∆tLb to T

(i)
b , for b = 0, 1.

33: Append sRb ⊕∆sb to S
(i)
b and tRb ⊕∆tRb to T

(i)
b , for b = 0, 1.

34: end if
35: end for
36: end for
37: for l = 1 to t do ▷ convert layer

38: Append (−1)T
(n)
0 [l][l] ·

(
Gconvert(S

(n)
0 [l])−Gconvert(S

(n)
1 [l])−B[l]

)
to CW (n+1).

39: end for
40: Set kb ← (S

(0)
b , CW (1), CW (2), · · · , CW (n)).

41: return (k0, k1).
42: end procedure
43: procedure Eval(1λ, b, kb, x)
44: Parse kb = ([s], CW (1), CW (2), · · · , CW (n)).
45: t← number of rows of any CW (i).
46: c← b||0t−1.
47: for i = 1 to n do
48: Parse c · CW (i) = ∆s||∆t0||∆t1 where ∆s ∈ {0, 1}λ and ∆t0,∆t1 ∈ {0, 1}t.
49: Parse G(s) = s0||t0||s1||t1.
50: s||c← (sx[i]||tx[i])⊕ (∆s||∆tx[i])
51: end for
52: return s||

⊕t
j=1 c[j]

53: end procedure

Figure 1: The big-state DMPF scheme

2

1: procedure DistributedGen(1λ, A0, A1, B0, B1) ▷ A0 and A1 are shares of A while B0 and B1 are shares of B.

2: For b = 0, 1, party b sets Seed
(0)
b = [rb] and Ind

(0)
b = [b||0t−1] where rb

$←− {0, 1}λ.
3: for i = 1 to n do
4: //Local computation phase for b = 0, 1:

5: Let Sum
(i)
b be an empty list.

6: for l = 1 to t do
7: Append

⊕
1≤k≤2i−1 ,Ind

(i−1)
b [k][l]=1

G(Seed
(i−1)
b [k]) to Sum

(i)
b .

8: end for
9: //Online secure computation phase (two parties run a secure 2PC protocol for the following process):

10: Let CW (i) be an empty list.
11: for l = 1 to t do
12: Let ∆sL||∆tL||∆sR||∆tR ← Sum

(i)
0 [l]⊕Sum(i)

1 [l] to Sum(i), where ∆sL,∆sR ∈ {0, 1}λ and ∆tL,∆tR ∈
{0, 1}t.

13: end for
14: Reconstruct the list A. Let A(j) denote the sorted and deduplicated list of j-bit prefixes of strings in A.
15: d← the index of A(i−1)[l]||0 in A(i).
16: if |A(i−1)| < l then
17: Append a random (λ+ 2t)-bit string to CW (i).
18: else if A(i−1)[l]||0 ∈ A(i) and A(i−1)[l]||1 ̸∈ A(i) then
19: Append ∆sR||∆tL ⊕ ed||∆tR to CW (i) where ed = 0d−110t−d.
20: else if A(i−1)[l]||1 ∈ A(i) and A(i−1)[l]||0 ̸∈ A(i) then
21: Append sL0 ⊕ sL1 ||tL0 ⊕ tL1 ||tR0 ⊕ tR1 ⊕ ed to CW (i).
22: else
23: Randomly sample r from {0, 1}λ.
24: Append r||tL0 ⊕ tL1 ⊕ ed||tR0 ⊕ tR1 ⊕ ed+1 to CW (i).
25: end if
26: //Local computation phase for b = 0, 1:

27: Let Seed
(i)
b , Ind

(i)
b be empty lists.

28: for k = 1 to 2i−1 do
29: Parse Ind

(i−1)
b [k] · CW (i) = ∆sb||∆tLb ||∆tRb .

30: sL||tL||sR||tR ← G(Seed
(i−1)
b [k])⊕∆sb||∆tLb ||∆sb||∆tRb .

31: Append sL and then sR to Seed
(i)
b .

32: Append tL and then tR to Ind
(i)
b .

33: end for
34: end for
35: //Local computation phase for b = 0, 1:

36: Let Sum
(n+1)
b be an empty list.

37: for l = 1 to t do
38: Append

∑
1≤k≤2n,Ind(n)

b [k][l]=1
Gconvert(Seed

(n)
b [k]) to Sum

(n+1)
b .

39: end for
40: //Online secure computation phase:
41: Let CW (n+1) be an empty list.
42: for l = 1 to t do
43: Append (−1)Ind

(n)
0 [A[l]][l] · (Sum(n+1)

0 [l]− Sum
(n+1)
1 [l]−B[l]) to CW (n+1).

44: end for
▷ Adding here one more local computation phase that corrects Gconvert(Seed

(n)
b [k])(1 ≤ k ≤ 2n) basing on

Ind
(n)
b and CW (n+1) directly gives the result of FullEval(1λ, b, kb) = {Eval(1λ, b, kb, x)}x∈{0,1}n .

45: Let kb ← (Seed
(0)
b , CW (1), · · · , CW (n+1)).

46: return kb to party b.
47: end procedure

Figure 2: (Small-domain) Distributed key generation protocol for the big-state DMPF

3

1: procedure Gen(1λ, A,B)
2: t← |A|, n← |A[1]|.
3: For 0 ≤ i ≤ n − 1, let A(i) be the sorted and deduplicated list of i-bit prefixes of strings in A. Specifically,

A(0) = [ϵ].
4: Let G : {0, 1}λ → {0, 1}2λ+2 be a public PRG.
5: Let F = F2λ+2 and let map : {0, 1}λ+2 → F be an efficiently computable and invertible 1-to-1 mapping.

6: Set S
(0)
b ← [rb] and T

(0)
b = [b] for b = 0, 1 where r0, r1 are sampled independently and randomly from {0, 1}λ.

7: for i = 1 to n do
8: Let V, S

(i)
0 , T

(i)
0 , S

(i)
1 , T

(i)
1 empty lists.

9: for l = 1 to |A(i−1)| do
10: Parse G(S

(i−1)
b [l]) = sLb ||tLb ||sRb ||tRb for b = 0, 1.

11: if A(i−1)[l]||0 ∈ A(i) and A(i−1)[l]||1 ̸∈ A(i) then
12: ∆s||∆tL||∆tR ← sR0 ⊕ sR1 ||tL0 ⊕ tL1 ⊕ 1||tR0 ⊕ tR1 .

13: Append sLb ⊕∆s · T (i−1)
b [l] to S

(i)
b and tLb ⊕∆tL · T (i−1)

b [l] to T
(i)
b [l] for b = 0, 1.

14: else if A(i−1)[l]||0 ̸∈ A(i) and A(i−1)[l]||0 ∈ A(i) then
15: ∆s||∆tL||∆tR ← sL0 ⊕ sL1 ||tL0 ⊕ tL1 ||tR0 ⊕ tR1 ⊕ 1.

16: Append sRb ⊕∆s · T (i−1)
b [l] to S

(i)
b and tRb ⊕∆tR · T (i−1)

b [l] to T
(i)
b [l] for b = 0, 1.

17: else
18: ∆s||∆tL||∆tR ← r||tL0 ⊕ tL1 ⊕ 1||tR0 ⊕ tR1 ⊕ 1 where r is randomly sampled from {0, 1}λ.
19: Append sLb ⊕∆s · T (i−1)

b [l] to S
(i)
b and tRb ⊕∆tL · T (i−1)

b [l] to T
(i)
b [l] for b = 0, 1.

20: Append sRb ⊕∆s · T (i−1)
b [l] to S

(i)
b and tRb ⊕∆tR · T (i−1)

b [l] to T
(i)
b [l] for b = 0, 1.

21: end if
22: Append ∆s||∆tL||∆tR to V .
23: end for
24: Let CW (i) ∈ Ft be the coefficients of a F[X] polynomial PCW (i) of degree less than t such that

PCW (i)(map(A(i−1)[l])) = map(V [l]) for all 1 ≤ l ≤ |A(i−1)|. (If |A(i−1)| < t then choose PCW (i) to be a
random polynomial that satisfies this condition.)

25: end for
▷ Add a convert layer.

26: Set kb ← [S
(0)
b , CW (1), CW (2), · · · , CW (n)].

27: return (k0, k1).
28: end procedure

29: procedure Eval(1λ, b, kb, x)
30: Parse kb = [[s], CW (1), CW (2), · · · , CW (n)].
31: Set c← b.
32: for i = 1 to n do
33: Parse G(s) = s0||t0||s1||t1.
34: Interpret CW (i) as a polynomial PCW (i) .
35: Parse map−1(PCW (i)(map(x[1...(i− 1)]||0n−i+1))) = ∆s||∆t0||∆t1.
36: s||c← sx[i]||tx[i] ⊕ (∆s||∆tx[i]) · c.
37: end for

▷ Convert.
38: return s.
39: end procedure

Figure 3: The new DMPF scheme

Remark 2. Actually PCW doesn’t need to be a polynomial. The property that CW (i) is an OKVS for pairs
{(A(i−1)[l], correctionl)}1≤l≤|A(i−1) suffices, where correctionl is ∆s||∆tL||∆tR computed at the node corresponding

to A(i−1)[l].

2.2 Efficiency analysis

Let N be the domain size of the class of t-point functions.

4

t× DPF MPFSS from (probabilistic) batch code[2][10][4][1] Big-state DMPF OKVS-DMPF
keysize t(λ+ 2) logN mλ log(N/m) t(λ+ 2t) logN logN×OKVS code size

Gen()
Dominating operations

Cheap operations
2t logN× PRG
O(tλ logN)

2m log(dN/m)×PRG
Finding a matching of t inputs to m buckets

O(mλ log(dN/m))

2t logN×PRG
O(t(λ+ t) logN)

2t logN×PRG,
logN×OKVS Encoding

O(tλ logN)

Eval()
Dominating operations

Cheap operations
t logN×PRG
O(tλ logN)

d log(dN/m)×PRG
Finding all buckets an input is mapped to

O(dλ log(dN/m))

logN×PRG
O((λ+ t) logN)

logN×PRG,
logN×OKVS Decoding

O(λ logN)

FullEval()
Dominating operations

Cheap operations
tN×PRG
O(tλN)

dN×PRG
Finding the input sequence in every bucket

O(dλN)

N×PRG
O((λ+ t)N)

N×PRG,
N× OKVS Decoding

O(λN)

Table 1: Keysize and running time comparison for different DMPF constructions for domain size N , t accepting
points and computational security parameter λ. We leave this table with the abstraction of (probabilistic) batch code
in the second column and the abstraction of OKVS in the last column, and plug in concrete instantiations later. m
in the second column stands for the number of buckets used in batch code, and d stands for the number of buckets
that an input is mapped to (we only consider regular degree because this is the case in most instantiations).

OKVS construction Error Code size Encoding time Decoding time

Polynomial no error t(λ+ 2)
O(t log2 t)

(including F-ops)

O(t) (single) ;

O(log2 t) (batched)
(including F-ops)

3H-GCT[9] (oblivious; binary) empiric (et+ ĝ + λstat)(λ+ 2)
O((ĝ + λstat + e)t) in total
(no field ops are involved)

(w + ĝ + λstat) F-+

3H-GCT[9] (oblivious; large field) empiric (et+ ĝ)(λ+ 2)
O(et+ ĝ) for triangulation

and ĝt F-× ĝ F-×

Ribbon[6] empiric

Ribbon[5] (binary) (analytic) 2−λstat et(λ+ 2) O(λ2
stat) by SGAUSS in [5] eλ

e−1 F-+

Table 2: Different OKVS instantiations comparison for OKVS of t key-value pairs with key space [N] and values
from field F = F2λ+2 . We consider the optimal-keysize construction which is a polynomial, and the presently fastest
constructions in [9]. Dominated factors are neglected. λstat in the second row denotes the statistical parameter, and
is implicit in the third row (the statistical error is small as long as the field is large enough). w, ĝ and e are parameters
given by [9]. Empirically w = 3, ĝ = 2 and e = 1.23 works for 26 ≤ t ≤ 230. One comment is all of the OKVS’s above
are linear OKVS schemes, but the linearity is not necessary in our DMPF construction.

t× DPF MPFSS from batch code[2, 10, 4, 1] Big-state DMPF OKVS-DMPF
keysize t(λ+ 2) logN m(λ+ 2) log(dN/m) t(λ+ 2t) logN (et+ ĝ)(λ+ 2) logN

Gen()
Dominating operations

Cheap operations
2t logN× PRG
O(tλ logN)

2m log(dN/m)×PRG
d-way cuckoo hashing t keys to m buckets

O(mλ log(dN/m))

2t logN×PRG
O(t(λ+ t) logN)

2t logN×PRG,
ĝt logN × F2λ+2-×

O(tλ logN)

Eval()
Dominating operations

Cheap operations
t logN×PRG
O(tλ logN)

d log(dN/m)×PRG
O(dλ log(dN/m))

logN×PRG
O((λ+ t) logN)

logN×PRG,
ĝ logN × F2λ+2-×

O(λ logN)

FullEval()
Dominating operations

Cheap operations
tN×PRG
O(tλN)

dN×PRG
O(dλN)

N×PRG
O((λ+ t)N)

N×PRG,
2ĝN × F2λ+2-×

O(λN)

Table 3: Keysize and running time comparison for different DMPF constructions obtained by plugging in concrete
instantiations of the abstract structures in table 1. Dominated factors are neglected. In this table, probabilistic
batch code is achieved through cuckoo hashing[1, 10, 4], with two parameters d and m. Setting m = 1.5t and d = 3
works for t > 200 with failure probability < 2−40 as suggested in [1], and also for smaller t with failure probability
approximately 2−20. The OKVS used in OKVS-DMPF is from [9], the third row in table 2, with parameters ĝ = 2
and e = 1.23.

A common feature for the OKVS-DMPF and batch code DMPF is the evaluation (and full-domain evaluation)
time does not increase with t. When t is not too big the evaluation time of OKVS-DMPF is much smaller than that
of the batch code DMPF. For very small t the evaluation time of the big-state DMPF is comparable to the other
two, but as t grows it becomes much larger than the other two.

The keysize of the OKVS-DMPF and batch code DMPF are comparable, and they are comparable to the keysize
of the big-state DMPF when t is small. Again as t grows the keysize of the big-state DMPF becomes much larger
than the other two, due to the t2 term in its expression.

The Gen() time of all constructions grow with t. The Gen() time of OKVS-DMPF and batch code DMPF grows
linearly with t, while that of big-state DMPF grows quadratically in with t.

5

Note that PBC and OKVS from [9] both have correctness errors, which lead to DMPF schemes with negligible
failure probability in key generation. We may also use perfectly correct OKVS (for example, encoding to a polynomial)
to obtain a DMPF with no failure in key generation, but its practical performance is much worse than the one with
failure probability.

2.2.1 Concrete applications and parameters

We use DMPFt,N,G to denote a DMPF scheme for t-point functions with domain [N] and output group G.

Concrete application
Cost in terms of DMPF
per correlation/execution

Typical DMPF parameters

PCG for OLE from Ring-LPN
seedsize ∝ DMPF.keysize

expand time ∝ DMPF.FullEval()
t = 52, 162, 762

N = 220

PSI-WCA
communication ∝ DMPF.keysize
client computation ∝ DMPF.Gen()
server computation ∝ DMPF.Eval()

t =any
N = 2128

Table 4: Concrete applications of DMPF.

PCG for OLE from Ring-LPN:
Background: hardness assumption Rc-LPNR,1,HWt

: Let R = Zp[X]/F(X) for a prime p and F (X) ∈ Zp. HWt

denotes uniform distribution over t-sparse polynomials in R. An alternative of hardness of Rc-LPNR,1,HWt
is

{(⃗a, ⟨1||⃗a, e⃗⟩)} ≈c {(⃗a, r)}r←U(R) where a⃗ = (a1, · · · ac−1)
$←− U(Rc−1) and e⃗ = (e0, e1 · · · , ec−1)← HWc

t .
The PCG construction in [3] makes use of the fact that ⟨1||⃗a, e⃗1⟩ · ⟨1||⃗a, e⃗2⟩ = ⟨(1||⃗a)⊗ (1||⃗a), e⃗1⊗ e⃗2⟩ while e⃗1⊗ e⃗2

consists of c2 R-elements, with each entry’s hamming weight at most t2. One such PCG can be constructed by
applying c2 DMPFt2,2N,Zp

’s.
If we change the hardness assumption to Rc-LPNR,1,regular-HWt with noise distribution regular-HWt being the

uniform distribution over all regular t-sparse polynomials in R, then each entry in e⃗1 ⊗ e⃗2 is a product of regular t-
sparse polynomials, and can be shared through 2 sets of {DMPFk,2N/t,Zp

}k=1,2,··· ,t. DMPF constructed through DPF
will benifit from the regularity of the noise distribution, while batch-code or OKVS-based DMPF being insensitive.

Noise distribution (e⃗) Entropy Total DMPF keysize Total DMPF FullEval time

(regular-HWt)
c E1 = c · log(N

t

tt) c2t2λ log(2N/t)
2c2tN×PRG (DPF);

4c2N×PRG+4c2ĝN × F
22λ+2 -MUL (OKVS-DMPF)

HWc
t E2 = c · log(N

t

t!) c2t2λ log(2N)
2c2t2N×PRG (DPF);

2c2N×PRG+2c2ĝN × F2λ+2-MUL (OKVS-DMPF)

Table 5: Comparison among different choices of noise distribution in module-LPN assumption, and their time and
space costs using different DMPF constructions. Dominated factors are ignored. We only consider trivial DMPF
construction by sum of DPFs, and our OKVS-based DMPF. In the regime N ≫ ct, the batch-code-based DMPF has
similar tendency as the OKVS-DMPF, and is hence ignored.

Yaxin Does entropy gain leads to significant efficiency improvement? Notice that under the same N, c
and t, E2 > E1 and E2 − E1 ≈ ct log e. Now let’s suppose c and N are always fixed and t1, t2 are the choices of
t for the first and second distribution such that they reach the same entropy. When N ≫ t we have the relation
t1
t2
≈ (1 + 1/ logN), which is not a big difference.

From table 5 we can see that the noise distribution regular-HWt should be preferred if we instantiate DMPF in
PCG for OLE through sum of DPF’s, while HW should be preferred if we instantiate DMPF through the big-state,
batch-code or OKVS-DMPF.

Now let’s compare the seed size and expand time of PCG with different DMPF instantiations in fig. 4, where
the naive (DPF) one has regular noise distribution. For extremely small t (t < 8), the big-state DMPF yields the
best expand time, at the expense of slightly larger seed size. For t ≥ 8 the seed size of the big-state DMPF becomes
incomparable to others while the expand time of the big-state DMPF grows with t and exceeds that of the naive
DPF construction when t is around 130, which is larger than the typical parameters.

The expand time of the batch-code or OKVS-DMPF doesn’t grow with t, and the expand time of OKVS-DMPF is
about 0.5× that of the batch-code-DMPF. However the seed size yielded by OKVS-DMPF is usually larger than the
batch-code-DMPF. When t is as small as 8, the seed size yielded by OKVS-DMPF is only slightly larger, but when t
grows to the largest typical parameter 76, the OKVS-DMPF is about ×2 of the seed size of the batch-code-DMPF.

6

In short, choosing the big-state DMPF for t < 8 and the OKVS-DMPF for t ≥ 8 gives at least ×2 acceleration
on expand time over other choices with sacrifice on the keysize. There is a tradeoff between the batch-code and
OKVS-DMPF in that the OKVS-DMPF always provides a ∼ ×2 acceleration on expand time, but a loss in seed size
that when t is large it may blow up the seed size to ∼ ×2 that of the batch-code-DMPF.

Figure 4: Full-domain Evaluation time and keysize of DMPF used in PCG for OLE[3] using four different DMPF
constructions. Consider the security parameter λ = 128, the domain size N = 220 and various noise weights per R-
element, from 4 to 160 (the typical weights per R-element in [3] are 5, 16 and 76). To obtain little failure probability,
the OKVS-DMPF is only applicable for t ≥ 8 as considered in [9]. PRG evaluation is modeled as two AES evaluations
with AES evaluation time 1.3 cycles per byte. Field multiplications in OKVS-DMPF approach 0.3 cycles per byte
[8] for the corresponding field. The actual expand time and seed size of PCG is ∼ ×c2 of that the FullEval time and
key size of DMPF, where c is the compression factor.

Private Set Intersection - Weighted Cardinality:

Figure 5: Key generation, evaluation time and keysize of DMPF used in PSI-WCA using four different DMPF
constructions. Consider the security parameter λ = 128, the domain size N = 2128 and various client set sizes
from 1 to 100,000. To obtain little failure probability, the OKVS-DMPF is only applicable for t ≥ 64 as considered
in [9]. PRG evaluation is modeled as two AES evaluations with AES evaluation time 1.3 cycles per byte. Field
multiplications in OKVS-DMPF approach 0.3 cycles per byte [8] for the corresponding field.

A short conclusion is using big-state DMPF for t < 64 and the OKVS-DMPF for t ≥ 64 gives at ∼ ×2 faster

7

Eval() time and faster Gen() time compared to the naive and batch-code construction. The keysize (∝ communication
complexity) of our choice is usually smaller than the batch-code DMPF and slightly larger than the naive construction.

2.3 Security analysis

See appendix A.

2.4 Distributed key generation

Suppose party 0 and 1 each holds a share (A0, B0) and (A1, B1) for the secret t-point function fA,B . In the sequel we
display the distributed key generation for our DMPF construction that pushes PRG evaluations to local computation,
with the cost that each party needs to locally compute O(2n) PRG evaluations (instead of tn online PRG evaluations).

1: Let map : {0, 1}2λ+2 → F22λ+2 be a public 1-to-1 mapping.
2: Let H ∈ Ft×2n

22λ+2 be a parity-check matrix for a (2n, 2n − t, t+ 1) linear ECC with alphabet F22λ+2 .

3: Party b samples rb
$←− {0, 1}λ and sets S

(0)
b = [rb], T

(0)
b = [b].

4: for i = 1 to n do
5: // Local computation phase:
6: Let Wordb ← (0F

22λ+2
)2

n

.

7: for x ∈ {0, 1}i−1 do

8: Wordb[x]← map(G(S
(i−1)
b [x])).

9: end for
▷ According to the DMPF construction, Word0 −Word1 is of hamming weight |A(i−1)| ≤ t.

10: Compute Syndromeb ← H ·Wordb.
11: // Secure 2PC phase:
12: Let Syndrome← Syndrome0 − Syndrome1.
13: Reconstruct A(i−1) and recover Word0 − Word1 by syndrome decoding on Syndrome with known error

positions A(i−1).
14: Knowing Word0 −Word1, compute CW (i) as in Gen().
15: // Local computation phase:
16: for x ∈ {0, 1}i do ▷ Local computation phase

17: Apply correction basing on S
(i−1)
b , T

(i−1)
b and CW (i) to obtain S

(i)
b [x] and T

(i)
b [x].

18: end for
19: end for

Figure 6: Distributed key generation for the DMPF scheme when domain size N is feasible

The online phase computes the process in Gen() excluding PRG evaluations, plus the process of decoding syn-
drome.

Instantiating the ECC with Reed-Solomon code in field F22λ+2 , we have the first step of the 2PC phase equivalent
to multiplying V −T (V is the Vandermonde matrix for accepting points at the corresponding level) with a vector,
while the second step of the 2PC phase equivalent to multiplying V −1 with a vector. Both can be achieved using
O(t log2 t) field-ops. This gives the total communication for distributing key generation O(t log2 t · λ logN). Using
the 2-level hashing idea gives some improvements in the first step, but asymptotically the same.

Another hope that reduces the asymptotic communication cost is to instantiate the ECC with OKVS row functions,
namely, H = [row(0)T , · · · r(1n)T] is of size 1.23t × 2n. The linear system solved in the first step of 2PC phase is
H ′ · x⃗ = Syndrome where H ′ is the matrix obtained by restricting H to the accepting paths on the corresponding
level. The linear system solved in the second step of 2PC phase is H ′T · CW = ∆S||∆T . The OKVS scheme [9]
provides a fast algorithm to solve the second system that can also be used to solve the first one. Optimistically the
total communication cost can be down to O(tλ logN), overlooking the cost for permuting matrix columns.

Unfortunately, batch-code based DMPF appears good in this aspect. The 2PC phase of distributed key generation
contains first cuckoo hashing t elements to m buckets which requires Õ(t) computation, and then compute the
distributed key generation for DPFs in each bucket, which requires O(mλ logN) computation. If we plug in the
practical parameter m = O(t), then the total communication is Õ(t) +O(tλ logN).

2.5 All about the convert layer

Yaxin TBD: construct the convert layer for different output types:

8

1. G = ({0, 1}λ,⊕)

2. G = {0, 1} (early termination)

3. G = F

4. General G

and argue that they are secure.

2.6 Distributed Multi-inverval

Add another bit at each node and correct at each child.

3 RSA-PPRF and DtPF

3.1 RSA-based PPRF

We provide a construction for puncturable PRF basing on standard RSA assumption that has polynomial input and
output domain size (M and S respectively), can puncture any subset and has near optimal punctured keysize.

• pPRF.Gen(1κ): Let N = pq be a κ-bit RSA modulus. Let M,S ∈ poly(κ) be the input and output domain
sizes of the PRF respectively. Let e1, · · · eM be random κ-bit RSA exponents relatively prime to Φ(N).

Output msk = (N, {ei}i∈[M], (p, q), u
$←− [N], r ← R) where R is the distribution for the hardcore function

below.

• pPRF.Eval(msk, x): Output hc(u1/ex mod N ; r) where r is an additional random input and hc is a hard-core
function of log |S|-bit span for the RSA function α 7→ αex . For example it can be the Goldreich-Levin hard-core
function [7].

• pPRF.Puncture(msk, T): Given T ⊆M and msk, output kT = (N, {ei}i∈M , T, uΠj∈T 1/ej mod N, r).

• pPRF.PuncEval(kT , x): Given kT = (N, {ei}i∈M , T, v, r) and x ∈ T , output hc(vΠj∈T,j ̸=xej ; r). If x ̸∈ T ,
output ⊥.

Note that we may assume {ei}i∈[M] and r are public random sequence so that it need not be included in msk or
kT . Then |kT | ≈ κ + |T | logM is near optimal. A downside for this RSA-based PPRF is one evaluation using the
punctured key takes feasible but long time. Hence it is suitable for the applications where keysize is more crucial.

Efficiency analysis for PuncEval: An evaluation of PuncEval(kT , ·) takes roughly the same time as |T | − 1
RSA encryptions. In some occasions we evaluate PuncEval(kT , ·) on all points in T , which consumes |T | log |T | RSA
encryptions using a simple recursive algorithm.

3.2 From RSA-PPRF to 1/poly-secure DtPF

Theorem 3. Given the RSA-based PPRF, we can construct:

1. 1/poly-secure programmable distributed t-point function with 1-sided keysize |kT |.

2. 1/poly-secure distributed pseudorandom t-point function with keysize for two parties being |msk|, |kT |.

3. Basing on 2, 1/poly-secure DtPF with keysize for two parties being |msk|+ t logS, |kT |+ t logS. (Yaxin TBD:
how to permute?)

4 From leaky DPF to secure DtPF

We can construct computationally secure PDtPF basing on 1/poly-secure PDPF, in almost the same old way.

Theorem 4. (Privacy amplification) Let S =
(
r+w
w

)
, L be as in the old construction and q = r(t+λ−1)+1. If there

exists a poly-domain O(1/qL)-secure PDPF for point functions with output group Zp, domain size L and keysize K,
then there is a (roughly) e−λ/2-secure PtDPF with output group Zp, domain size S and keysize qK. (sketchy)

Corollary 5. If the PDPF is instantiated using RSA-PPRF then the keysize of the computationally secure PtDPF
can be ∼ (κ+ logM) · r(t+ λ).

9

References

[1] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. Pir with compressed queries and amortized query
processing. Cryptology ePrint Archive, Paper 2017/1142, 2017. https://eprint.iacr.org/2017/1142.

[2] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector ole. Cryptology ePrint Archive,
Paper 2019/273, 2019. https://eprint.iacr.org/2019/273.

[3] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient pseudorandom
correlation generators from ring-lpn. Cryptology ePrint Archive, Paper 2022/1035, 2022. https://eprint.

iacr.org/2022/1035.

[4] Leo de Castro and Antigoni Polychroniadou. Lightweight, maliciously secure verifiable function secret sharing.
Cryptology ePrint Archive, Paper 2021/580, 2021. https://eprint.iacr.org/2021/580.

[5] Martin Dietzfelbinger and Stefan Walzer. Efficient Gauss Elimination for Near-Quadratic Matrices with One
Short Random Block per Row, with Applications, July 2019. arXiv:1907.04750 [cs].

[6] Peter C. Dillinger and Stefan Walzer. Ribbon filter: practically smaller than Bloom and Xor, March 2021.
arXiv:2103.02515 [cs].

[7] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In Proceedings of the Twenty-
First Annual ACM Symposium on Theory of Computing, STOC ’89, page 25–32, New York, NY, USA, 1989.
Association for Computing Machinery.

[8] Shay Gueron, Adam Langley, and Yehuda Lindell. Aes-gcm-siv: Specification and analysis. Cryptology ePrint
Archive, Paper 2017/168, 2017. https://eprint.iacr.org/2017/168.

[9] Srinivasan Raghuraman and Peter Rindal. Blazing fast psi from improved okvs and subfield vole. Cryptology
ePrint Archive, Paper 2022/320, 2022. https://eprint.iacr.org/2022/320.

[10] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. Distributed vector-ole: Improved
constructions and implementation. Cryptology ePrint Archive, Paper 2019/1084, 2019. https://eprint.iacr.
org/2019/1084.

A Security proof for the DMPF scheme 2.1

A.0.1 Privacy

10

https://eprint.iacr.org/2017/1142
https://eprint.iacr.org/2019/273
https://eprint.iacr.org/2022/1035
https://eprint.iacr.org/2022/1035
https://eprint.iacr.org/2021/580
https://eprint.iacr.org/2017/168
https://eprint.iacr.org/2022/320
https://eprint.iacr.org/2019/1084
https://eprint.iacr.org/2019/1084

We argue the privacy of our scheme by a standard hybrid argument.

Algorithm 1 Hybj(1
λ, b, A,B)

1: Randomly sample S
(0)
b = [s

(0)
b] from {0, 1}λ.

2: Set T
(0)
0 = [0] and T

(0)
1 = [1].

3: for i = 1 to n do
4: if i ≤ j then
5: Randomly sample CW (i) ← Ft.

6: Let S
(i)
b be an empty list.

7: Interpret CW (i) as a polynomial PCW (i) .
8: for l = 1 to |A(i−1)| do
9: Parse map−1(PCW (i)(map(A(i−1)[l]||0n−i+1))) = ∆s||∆tL||∆tR.

10: Parse G(S
(i−1)
b [l]) = sLb ||tLb ||sRb ||tRb .

11: if A(i−1)[l]||0 ∈ A(i) and A(i−1)[l]||1 ̸∈ A(i) then

12: Append sLb ⊕∆s · T (i−1)
b [l] to S

(i)
b and tLb ⊕∆tL · T (i−1)

b [l] to T
(i)
b [l].

13: else if A(i−1)[l]||0 ̸∈ A(i) and A(i−1)[l]||0 ∈ A(i) then

14: Append sRb ⊕∆s · T (i−1)
b [l] to S

(i)
b and tRb ⊕∆tR · T (i−1)

b [l] to T
(i)
b [l].

15: else
16: Append sLb ⊕∆s · T (i−1)

b [l] to S
(i)
b and tRb ⊕∆tL · T (i−1)

b [l] to T
(i)
b [l].

17: Append sRb ⊕∆s · T (i−1)
b [l] to S

(i)
b and tRb ⊕∆tR · T (i−1)

b [l] to T
(i)
b [l].

18: end if
19: end for
20: else
21: if i = j + 1 then

22: Sample a list S
(i−1)
1−b of |A(i−1)| independent and random λ-bit strings.

23: Let T
(i−1)
1−b be a list such that T

(i−1)
1−b [l] = T

(i−1)
b [l]⊕ 1.

24: end if
25: Let V, S

(i)
0 , T

(i)
0 , S

(i)
1 , T

(i)
1 empty lists.

26: for l = 1 to |A(i−1)| do
27: Parse G(S

(i−1)
b [l]) = sLb ||tLb ||sRb ||tRb for b = 0, 1.

28: if A(i−1)[l]||0 ∈ A(i) and A(i−1)[l]||1 ̸∈ A(i) then
29: ∆s||∆tL||∆tR ← sR0 ⊕ sR1 ||tL0 ⊕ tL1 ⊕ 1||tR0 ⊕ tR1 .

30: Append sLb ⊕∆s · T (i−1)
b [l] to S

(i)
b and tLb ⊕∆tL · T (i−1)

b [l] to T
(i)
b [l] for b = 0, 1.

31: else if A(i−1)[l]||0 ̸∈ A(i) and A(i−1)[l]||0 ∈ A(i) then
32: ∆s||∆tL||∆tR ← sL0 ⊕ sL1 ||tL0 ⊕ tL1 ||tR0 ⊕ tR1 ⊕ 1.

33: Append sRb ⊕∆s · T (i−1)
b [l] to S

(i)
b and tRb ⊕∆tR · T (i−1)

b [l] to T
(i)
b [l] for b = 0, 1.

34: else
35: ∆s||∆tL||∆tR ← r||tL0 ⊕ tL1 ⊕ 1||tR0 ⊕ tR1 ⊕ 1 where r is randomly sampled from {0, 1}λ.
36: Append sLb ⊕∆s · T (i−1)

b [l] to S
(i)
b and tRb ⊕∆tL · T (i−1)

b [l] to T
(i)
b [l] for b = 0, 1.

37: Append sRb ⊕∆s · T (i−1)
b [l] to S

(i)
b and tRb ⊕∆tR · T (i−1)

b [l] to T
(i)
b [l] for b = 0, 1.

38: end if
39: Append ∆s||∆tL||∆tR to V .
40: end for
41: Let CW (i) ∈ Ft be the coefficients of a F[X] polynomial PCW such that PCW (map(A(i−1)[l])) = map(V [l])

for all 1 ≤ l ≤ |A(i−1)|. (If |A(i−1)| < t then choose PCW to be a random polynomial that satisfies this condition.)
42: end if
43: end for

▷ Add convert layer.

44: Output [S
(0)
b , CW (1), CW (2), · · · , CW (n)].

Claim 6. Suppose G is ϵG-secure against every n.u.p.p.t. adversary, then for every ≤ j ≤ n, every b ∈ {0, 1}, every
A containing t n-bit strings,B containing t G elements, and every n.u.p.p.t. adversary Adv,

|Pr[key ← Hybj−1(1
λ, b, A,B), Adv(1λ, key) = 1]− Pr[key ← Hybj(1

λ, b, A,B), Adv(1λ, key) = 1]| ≤ ϵG|A(j−1)|

Proof. Prove by contradiction. Assume Adv is a n.u.p.p.t adversary that for some 1 ≤ j ≤ n, some b ∈ {0, 1}, some

11

A and B,

|Pr[key ← Hybj−1(1
λ, b, A,B), Adv(1λ, key) = 1]− Pr[key ← Hybj(1

λ, b, A,B), Adv(1λ, key) = 1]| > ϵG|A(j−1)|

Then let’s construct a n.u.p.p.t adversary Adv′ which distinguishes {G(s)}⊗|A
(j−1)|

s←U({0,1}λ) from uniform distribution

with advantage larger than ϵG|A(j−1)|, which implies some PRG-adversary distinguishing {G(s)}s∈U({0,1}λ) uniform
distribution with advantage larger than ϵG.

Algorithm 2 PRG adversary Adv′(1λ, j, b, A,B, r) where r ∈ {0, 1}(2λ+2)|A(j−1)| is the challenge

1: Parse r = r10||r11||r20||r21|| · · · ||r
|A(j−1)|
0 ||r|A

(j−1)|
1 where |rlz| = λ+ 1.

2: Randomly sample S
(0)
b = [s

(0)
b] from {0, 1}λ.

3: Set T
(0)
0 = [0] and T

(0)
1 = [1].

4: for i = 1 to n do
5: if i ≤ j − 1 then
6: Randomly sample CW (i) ← Ft.

7: Let S
(i)
b be an empty list.

8: Interpret CW (i) as a polynomial PCW (i) .
9: for l = 1 to |A(i−1)| do

10: Parse map−1(PCW (i)(map(A(i−1)[l]||0n−i+1))) = ∆s||∆tL||∆tR.

11: Parse G(S
(i−1)
b [l]) = sLb ||tLb ||sRb ||tRb .

12: if A(i−1)[l]||0 ∈ A(i) and A(i−1)[l]||1 ̸∈ A(i) then

13: Append sLb ⊕∆s · T (i−1)
b [l] to S

(i)
b and tLb ⊕∆tL · T (i−1)

b [l] to T
(i)
b [l].

14: else if A(i−1)[l]||0 ̸∈ A(i) and A(i−1)[l]||0 ∈ A(i) then

15: Append sRb ⊕∆s · T (i−1)
b [l] to S

(i)
b and tRb ⊕∆tR · T (i−1)

b [l] to T
(i)
b [l].

16: else
17: Append sLb ⊕∆s · T (i−1)

b [l] to S
(i)
b and tRb ⊕∆tL · T (i−1)

b [l] to T
(i)
b [l].

18: Append sRb ⊕∆s · T (i−1)
b [l] to S

(i)
b and tRb ⊕∆tR · T (i−1)

b [l] to T
(i)
b [l].

19: end if
20: end for
21: else

22: Define Rl
0||Rl

1 =

{
rl0||rl1 i = j

G(S
(i−1)
1−b [l]) else

for 1 ≤ l ≤ |A(i−1)|.

23: Let V, S
(i)
0 , T

(i)
0 , S

(i)
1 , T

(i)
1 empty lists.

24: for l = 1 to |A(i−1)| do
25: Parse G(S

(i−1)
b [l]) = sLb ||tLb ||sRb ||tRb .

26: Parse Rl
0||Rl

1 = sL1−b||tL1−b||sR1−b||tR1−b.
27: if A(i−1)[l]||0 ∈ A(i) and A(i−1)[l]||1 ̸∈ A(i) then
28: ∆s||∆tL||∆tR ← sR0 ⊕ sR1 ||tL0 ⊕ tL1 ⊕ 1||tR0 ⊕ tR1 .

29: Append sLb ⊕∆s · T (i−1)
b [l] to S

(i)
b and tLb ⊕∆tL · T (i−1)

b [l] to T
(i)
b [l] for b = 0, 1.

30: else if A(i−1)[l]||0 ̸∈ A(i) and A(i−1)[l]||0 ∈ A(i) then
31: ∆s||∆tL||∆tR ← sL0 ⊕ sL1 ||tL0 ⊕ tL1 ||tR0 ⊕ tR1 ⊕ 1.

32: Append sRb ⊕∆s · T (i−1)
b [l] to S

(i)
b and tRb ⊕∆tR · T (i−1)

b [l] to T
(i)
b [l] for b = 0, 1.

33: else
34: ∆s||∆tL||∆tR ← r||tL0 ⊕ tL1 ⊕ 1||tR0 ⊕ tR1 ⊕ 1 where r is randomly sampled from {0, 1}λ.
35: Append sLb ⊕∆s · T (i−1)

b [l] to S
(i)
b and tRb ⊕∆tL · T (i−1)

b [l] to T
(i)
b [l] for b = 0, 1.

36: Append sRb ⊕∆s · T (i−1)
b [l] to S

(i)
b and tRb ⊕∆tR · T (i−1)

b [l] to T
(i)
b [l] for b = 0, 1.

37: end if
38: Append ∆s||∆tL||∆tR to V .
39: end for
40: Let CW (i) ∈ Ft be the coefficients of a F[X] polynomial PCW such that PCW (map(A(i−1)[l])) = map(V [l])

for all 1 ≤ l ≤ |A(i−1)|. (If |A(i−1)| < t then choose PCW to be a random polynomial that satisfies this condition.)
41: end if
42: end for

▷ Add convert layer.

43: key ← [S
(0)
b , CW (1), CW (2), · · · , CW (n)]

44: Output Adv(1λ, key).

12

If r is a sample of {G(s)}⊗|A
(j−1)|

s∈U({0,1}λ , then rl0||rl1 = G(sl) for some randomly sampled sl, for all 1 ≤ l ≤ |A(j−1)|,
which generates key in the same way as Hybj−1. Meanwhile if r is from the uniform distribution, the procedure
generates key in the same way as Hybj .

Hence,

|Pr[key ← Hybj−1(1
λ, b, A,B), Adv(1λ, key) = 1]− Pr[key ← Hybj(1

λ, b, A,B), Adv(1λ, key) = 1]|

=|Pr[s← U({0, 1}λ|A
(j−1)|), Adv′(1λ, j, b, A,B,G⊗|A

(j−1)|(s) = 1]− Pr[r ← U({0, 1}(2λ+2)|A(j−1)|), Adv′(1λ, j, b, A,B, r) = 1]|
≤ϵG|A(j−1)|

Together with the following two facts:

1. {key ← Hyb0(1
λ, b, A,B)} = {kb|(k0, k1)← Gen(1λ, A,B)}

2. {key ← Hybn(1
λ, b, A,B)} is truly random.

we have the following security of the DMPF scheme:

Theorem 7. Suppose G : {0, 1}λ → {0, 1}2λ+2 is ϵG-secure against every n.u.p.p.t. adversary. Then the scheme
is a secure distributed t-point function scheme for the function family fA,B : {0, 1}n → G with key size tn(λ + 1) +
λkeysizeconvert with secrecy tnϵG + ϵconvert.

A.0.2 Correctness

The scheme has perfect correctness.

13

	Big-state DMPF
	The scheme
	Distributed key generation

	A new scheme of DMPF
	The raw scheme
	Efficiency analysis
	Concrete applications and parameters

	Security analysis
	Distributed key generation
	All about the convert layer
	Distributed Multi-inverval

	RSA-PPRF and DtPF
	RSA-based PPRF
	From RSA-PPRF to 1/poly-secure DtPF

	From leaky DPF to secure DtPF
	Security proof for the DMPF scheme 2.1
	Privacy
	Correctness

